A Light-weight Method to Foster the (Grad)CAM Interpretability and Explainability of Classification Networks

A. Schöttl
{"title":"A Light-weight Method to Foster the (Grad)CAM Interpretability and Explainability of Classification Networks","authors":"A. Schöttl","doi":"10.1109/ACIT49673.2020.9208950","DOIUrl":null,"url":null,"abstract":"We consider a light-weight method which allows to improve the explainability of localized classification networks. The method considers (Grad)CAM maps during the training process by modification of the training loss and does not require additional structural elements. It is demonstrated that the (Grad)CAM interpretability, as measured by several indicators, can be improved in this way. Since the method shall be applicable on embedded systems and on standard deeper architectures, it essentially takes advantage of second order derivatives during the training and does not require additional model layers.","PeriodicalId":372744,"journal":{"name":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","volume":"528 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 10th International Conference on Advanced Computer Information Technologies (ACIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIT49673.2020.9208950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We consider a light-weight method which allows to improve the explainability of localized classification networks. The method considers (Grad)CAM maps during the training process by modification of the training loss and does not require additional structural elements. It is demonstrated that the (Grad)CAM interpretability, as measured by several indicators, can be improved in this way. Since the method shall be applicable on embedded systems and on standard deeper architectures, it essentially takes advantage of second order derivatives during the training and does not require additional model layers.
培养分类网络(Grad)CAM可解释性和可解释性的轻量级方法
我们考虑了一种轻量级的方法,它可以提高局部分类网络的可解释性。该方法在训练过程中通过修改训练损失来考虑(Grad)CAM映射,并且不需要额外的结构元素。结果表明,采用这种方法可以提高(Grad)CAM的可解释性,可以用几个指标来衡量。由于该方法应适用于嵌入式系统和标准的更深层次架构,因此它在训练过程中基本上利用了二阶导数,不需要额外的模型层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信