Comparison of multisensor fusion methods for seabed classification

D. Kerneis, B. Zerr
{"title":"Comparison of multisensor fusion methods for seabed classification","authors":"D. Kerneis, B. Zerr","doi":"10.1109/OCEANSE.2005.1513172","DOIUrl":null,"url":null,"abstract":"Automatic seabed classification can be achieved using acoustic sensors but methods need to be improved. In order to get better classification reliability, we propose to use complementarity between sidescan sonar images and a digital elevation models (DEM). The new feature is that the sonar (Klein), provides a high resolution sidescan sonar image which pixels are colocated with high resolution interferometric points. After extracting information from each of the two sources, the key point is to fuse them to be able to classify the seabed. We propose to compare three fusion approaches: two signal-level fusion based on multidimensional classification algorithms, and a symbol-level fusion based on the Dempster-Shafer evidence theory. These methods are tested on real sonar data.","PeriodicalId":120840,"journal":{"name":"Europe Oceans 2005","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Europe Oceans 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/OCEANSE.2005.1513172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic seabed classification can be achieved using acoustic sensors but methods need to be improved. In order to get better classification reliability, we propose to use complementarity between sidescan sonar images and a digital elevation models (DEM). The new feature is that the sonar (Klein), provides a high resolution sidescan sonar image which pixels are colocated with high resolution interferometric points. After extracting information from each of the two sources, the key point is to fuse them to be able to classify the seabed. We propose to compare three fusion approaches: two signal-level fusion based on multidimensional classification algorithms, and a symbol-level fusion based on the Dempster-Shafer evidence theory. These methods are tested on real sonar data.
多传感器融合海底分类方法比较
利用声传感器可以实现海底自动分类,但方法有待改进。为了获得更好的分类可靠性,我们提出在侧扫声纳图像和数字高程模型(DEM)之间进行互补。新的特点是,声纳(克莱恩),提供了一个高分辨率的侧面扫描图像,像素与高分辨率干涉点并置。在从两个源中提取信息后,关键是将它们融合在一起,从而能够对海床进行分类。我们提出比较三种融合方法:基于多维分类算法的两种信号级融合和基于Dempster-Shafer证据理论的符号级融合。这些方法在实际声纳数据上进行了测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信