M. Endo, D. Sugimoto, S. Takeda, K. Nanri, T. Fujioka
{"title":"Industrial chemical oxygen-iodine laser at Tokai University","authors":"M. Endo, D. Sugimoto, S. Takeda, K. Nanri, T. Fujioka","doi":"10.1117/12.380914","DOIUrl":null,"url":null,"abstract":"Development of Chemical Oxygen-Iodine Laser (COIL) in Tokai University is described. From FY1996, we have conducted a three-year research project sponsored by NEDO (New Energy and industrial technology Development Organization), and it was finished in March 1999. As a result, high-efficiency operation (23.4%) of COIL with nitrogen as a buffer gas was demonstrated. Reduction of the vacuum pump size by the high- pressure subsonic mode operation with turbo blower was demonstrated. Specific energy reached to 3.5 J/liter. Output power stabilization/modulation technique by the external magnetic field was developed. Twisted Aerosol Singlet Oxygen Generator (TA-SOG) was tested and its performance was compared to liquid-jet SOG. TA-SOG was operated at the internal gas velocity of 85 m/s. Novel unstable resonator was developed with the aid of newly developed FFT code. We are now conducting a one-year project whose goal is a development of a 1 kW-class system capable of one-hour stable operation. Finally, three operation modes of future industrial COIL are proposed.","PeriodicalId":375593,"journal":{"name":"Advanced High-Power Lasers and Applications","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced High-Power Lasers and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.380914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Development of Chemical Oxygen-Iodine Laser (COIL) in Tokai University is described. From FY1996, we have conducted a three-year research project sponsored by NEDO (New Energy and industrial technology Development Organization), and it was finished in March 1999. As a result, high-efficiency operation (23.4%) of COIL with nitrogen as a buffer gas was demonstrated. Reduction of the vacuum pump size by the high- pressure subsonic mode operation with turbo blower was demonstrated. Specific energy reached to 3.5 J/liter. Output power stabilization/modulation technique by the external magnetic field was developed. Twisted Aerosol Singlet Oxygen Generator (TA-SOG) was tested and its performance was compared to liquid-jet SOG. TA-SOG was operated at the internal gas velocity of 85 m/s. Novel unstable resonator was developed with the aid of newly developed FFT code. We are now conducting a one-year project whose goal is a development of a 1 kW-class system capable of one-hour stable operation. Finally, three operation modes of future industrial COIL are proposed.