Characterizing Optimal Allocations in Quantile-Based Risk Sharing

Ruodu Wang, Yunran Wei
{"title":"Characterizing Optimal Allocations in Quantile-Based Risk Sharing","authors":"Ruodu Wang, Yunran Wei","doi":"10.2139/ssrn.3173503","DOIUrl":null,"url":null,"abstract":"Abstract Unlike classic risk sharing problems based on expected utilities or convex risk measures, quantile-based risk sharing problems exhibit two special features. First, quantile-based risk measures (such as the Value-at-Risk) are often not convex, and second, they ignore some part of the distribution of the risk. These features create technical challenges in establishing a full characterization of optimal allocations, a question left unanswered in the literature. In this paper, we address the issues on the existence and the characterization of (Pareto-)optimal allocations in risk sharing problems for the Range-Value-at-Risk family. It turns out that negative dependence, mutual exclusivity in particular, plays an important role in the optimal allocations, in contrast to positive dependence appearing in classic risk sharing problems. As a by-product of our main finding, we obtain some results on the optimization of the Value-at-Risk (VaR) and the Expected Shortfall, as well as a new result on the inf-convolution of VaR and a general distortion risk measure.","PeriodicalId":203996,"journal":{"name":"ERN: Value-at-Risk (Topic)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Value-at-Risk (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3173503","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

Abstract Unlike classic risk sharing problems based on expected utilities or convex risk measures, quantile-based risk sharing problems exhibit two special features. First, quantile-based risk measures (such as the Value-at-Risk) are often not convex, and second, they ignore some part of the distribution of the risk. These features create technical challenges in establishing a full characterization of optimal allocations, a question left unanswered in the literature. In this paper, we address the issues on the existence and the characterization of (Pareto-)optimal allocations in risk sharing problems for the Range-Value-at-Risk family. It turns out that negative dependence, mutual exclusivity in particular, plays an important role in the optimal allocations, in contrast to positive dependence appearing in classic risk sharing problems. As a by-product of our main finding, we obtain some results on the optimization of the Value-at-Risk (VaR) and the Expected Shortfall, as well as a new result on the inf-convolution of VaR and a general distortion risk measure.
基于分位数的风险分担的最优分配特征
与基于期望效用或凸风险度量的经典风险分担问题不同,基于分位数的风险分担问题表现出两个特殊的特征。首先,基于分位数的风险度量(例如风险价值)通常不是凸的,其次,它们忽略了风险分布的某些部分。这些特征在建立最佳分配的完整特征方面带来了技术挑战,这是一个在文献中未得到回答的问题。本文研究了范围-风险值族风险分担问题中(Pareto-)最优分配的存在性和特征。结果表明,与经典风险分担问题中出现的正依赖相比,负依赖尤其是互斥性在最优配置中起着重要作用。作为我们的主要发现的副产品,我们得到了一些关于风险价值(VaR)和预期不足的优化结果,以及关于VaR的内卷积和一般失真风险度量的新结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信