Scaling Computation on GPUs Using Powerlists

Anshu S. Anand, R. Shyamasundar
{"title":"Scaling Computation on GPUs Using Powerlists","authors":"Anshu S. Anand, R. Shyamasundar","doi":"10.1109/HiPCW.2015.14","DOIUrl":null,"url":null,"abstract":"With the explosion of big data analytics, scaling linear algebra packages has become extremely important. Inthe context of GPUs, cuBLAS API provides a highly efficientpackage for linear algebra subroutines on a single GPU. Dueto inputs of large dimensions, it often becomes necessary tocompute over clusters. However, the package does not provide facilities for computing over a 'cluster of GPUs' efficiently. Inthis paper, we demonstrate a high level framework for scaling linear algebra computations across a cluster of GPUs, through matrix multiplication problem. In particular, we describe amethod of specifying matrices using powerlists that captures both parallelism and recursion succinctly, and automatically schedule partitioned matrices over a GPU cluster to gain the advantages of cuBLAS for computing the product of partitioned matrices over a cluster of GPUs. Our experimental results show significant performance gains, of the order ofat least 132% for large matrices over that of a single GPUcomputation. The method reflects the map-reduce paradigmwhere the matrices are mapped to appropriate partitioned matrices and sent to appropriate members of the clusters andthe results are collected to obtain the resultant matrix.","PeriodicalId":203902,"journal":{"name":"2015 IEEE 22nd International Conference on High Performance Computing Workshops","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 22nd International Conference on High Performance Computing Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPCW.2015.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

With the explosion of big data analytics, scaling linear algebra packages has become extremely important. Inthe context of GPUs, cuBLAS API provides a highly efficientpackage for linear algebra subroutines on a single GPU. Dueto inputs of large dimensions, it often becomes necessary tocompute over clusters. However, the package does not provide facilities for computing over a 'cluster of GPUs' efficiently. Inthis paper, we demonstrate a high level framework for scaling linear algebra computations across a cluster of GPUs, through matrix multiplication problem. In particular, we describe amethod of specifying matrices using powerlists that captures both parallelism and recursion succinctly, and automatically schedule partitioned matrices over a GPU cluster to gain the advantages of cuBLAS for computing the product of partitioned matrices over a cluster of GPUs. Our experimental results show significant performance gains, of the order ofat least 132% for large matrices over that of a single GPUcomputation. The method reflects the map-reduce paradigmwhere the matrices are mapped to appropriate partitioned matrices and sent to appropriate members of the clusters andthe results are collected to obtain the resultant matrix.
使用Powerlists在gpu上缩放计算
随着大数据分析的爆炸式增长,扩展线性代数包变得极其重要。在GPU环境下,cuBLAS API为单个GPU上的线性代数子程序提供了一个高效的包。由于输入的维度很大,通常需要对集群进行计算。然而,该软件包并没有为“gpu集群”提供高效的计算设施。在本文中,我们通过矩阵乘法问题演示了一个用于跨gpu集群缩放线性代数计算的高级框架。特别是,我们描述了使用powerlist指定矩阵的方法,该方法简洁地捕获了并行性和递归,并在GPU集群上自动调度分区矩阵,以获得cuBLAS在GPU集群上计算分区矩阵乘积的优势。我们的实验结果显示了显著的性能提升,与单个gpu计算相比,大型矩阵的性能至少提高了132%。该方法反映了映射-约简范式,将矩阵映射到适当的分区矩阵,并发送给簇的适当成员,并收集结果以获得最终矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信