Managing Large Multiple-choice Test Items Repositories

V. Albano, D. Firmani, L. Laura, Anna Lucia Paoletti, Irene Torrente
{"title":"Managing Large Multiple-choice Test Items Repositories","authors":"V. Albano, D. Firmani, L. Laura, Anna Lucia Paoletti, Irene Torrente","doi":"10.1109/IV56949.2022.00054","DOIUrl":null,"url":null,"abstract":"Knowledge assessment in online platforms is widely based on multiple-choice questions (MCQs). In this paper we describe our proposal for a NLP-based system designed to support the management of large repositories of MCQs. Indeed, within large repositories of MCQs, it is common to have similar if not almost duplicated questions, and coping with them is a time consuming and error prone task. We propose an approach, based on Natural Language Processing (NLP), that i) computes the similarity between the items and ii) checks the similarity between the questions and, if available, the areas of the syllabus. The results of the analysis are also displayed in a graph (i.e. network) based view, providing a clear picture to the user.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"155 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Knowledge assessment in online platforms is widely based on multiple-choice questions (MCQs). In this paper we describe our proposal for a NLP-based system designed to support the management of large repositories of MCQs. Indeed, within large repositories of MCQs, it is common to have similar if not almost duplicated questions, and coping with them is a time consuming and error prone task. We propose an approach, based on Natural Language Processing (NLP), that i) computes the similarity between the items and ii) checks the similarity between the questions and, if available, the areas of the syllabus. The results of the analysis are also displayed in a graph (i.e. network) based view, providing a clear picture to the user.
管理大型多项选择测试项目存储库
网络平台上的知识评估普遍基于多项选择题。在本文中,我们描述了一个基于nlp的系统的建议,该系统旨在支持大型mcq库的管理。实际上,在大型mcq存储库中,通常会有类似的问题(如果不是几乎重复的话),并且处理它们是一项耗时且容易出错的任务。我们提出了一种基于自然语言处理(NLP)的方法,该方法i)计算项目之间的相似性,ii)检查问题之间的相似性,如果有的话,检查教学大纲的区域。分析结果还以图形(即网络)视图的形式显示,为用户提供清晰的画面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信