Graph Neural Network Emulation of Cardiac Mechanics

D. Dalton, Alan Lazarus, A. Rabbani, Hao Gao, D. Husmeier
{"title":"Graph Neural Network Emulation of Cardiac Mechanics","authors":"D. Dalton, Alan Lazarus, A. Rabbani, Hao Gao, D. Husmeier","doi":"10.11159/icsta21.127","DOIUrl":null,"url":null,"abstract":"This paper compares the performance of two graph neural network architectures on the emulation of a cardiac mechanic model of the left ventricle of the heart. These models can be applied directly on the same computational mesh of the left ventricle geometry that is used by the expensive numerical forward solver, precluding the need for a low-order approximation of the true geometry. Our results show that these emulation approaches incur negligible loss in accuracy compared in the forward simulator, while making predictions multiple orders of magnitude more quickly, raising the prospect for their use in both forward and inverse problems in cardiac modelling.","PeriodicalId":403959,"journal":{"name":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on Statistics: Theory and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11159/icsta21.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper compares the performance of two graph neural network architectures on the emulation of a cardiac mechanic model of the left ventricle of the heart. These models can be applied directly on the same computational mesh of the left ventricle geometry that is used by the expensive numerical forward solver, precluding the need for a low-order approximation of the true geometry. Our results show that these emulation approaches incur negligible loss in accuracy compared in the forward simulator, while making predictions multiple orders of magnitude more quickly, raising the prospect for their use in both forward and inverse problems in cardiac modelling.
心脏力学的图神经网络仿真
本文比较了两种图神经网络结构在心脏左心室力学模型仿真中的性能。这些模型可以直接应用于昂贵的数值正演求解器所使用的左心室几何形状的相同计算网格,从而排除了对真实几何形状的低阶近似的需要。我们的研究结果表明,与前向模拟器相比,这些仿真方法在精度上的损失可以忽略不计,同时使预测速度提高了多个数量级,从而提高了它们在心脏建模的正向和逆问题中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信