Quantized Corrupted Sensing with Random Dithering

Zhongxing Sun, Wei Cui, Yulong Liu
{"title":"Quantized Corrupted Sensing with Random Dithering","authors":"Zhongxing Sun, Wei Cui, Yulong Liu","doi":"10.1109/ISIT44484.2020.9174328","DOIUrl":null,"url":null,"abstract":"Quantized corrupted sensing concerns the problem of estimating structured signals from their quantized corrupted samples. A typical case is that when the measurements y = Φx* + v* + n are corrupted with both structured corruption v* and unstructured noise n, we wish to reconstruct x* and v* from the quantized samples of y. Our work shows that the Generalized Lasso can be applied for the recovery of signal provided that a uniform random dithering is added to the measurements before quantization. The theoretical results illustrate that the influence of quantization behaves as independent unstructured noise. We also confirm our results numerically in several scenarios such as sparse vectors and low-rank matrices.","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Quantized corrupted sensing concerns the problem of estimating structured signals from their quantized corrupted samples. A typical case is that when the measurements y = Φx* + v* + n are corrupted with both structured corruption v* and unstructured noise n, we wish to reconstruct x* and v* from the quantized samples of y. Our work shows that the Generalized Lasso can be applied for the recovery of signal provided that a uniform random dithering is added to the measurements before quantization. The theoretical results illustrate that the influence of quantization behaves as independent unstructured noise. We also confirm our results numerically in several scenarios such as sparse vectors and low-rank matrices.
随机抖动的量化损坏感知
量化损坏感知涉及到从量化损坏样本中估计结构化信号的问题。一个典型的例子是当测量值y = Φx* + v* + n同时受到结构化损坏v*和非结构化噪声n的破坏时,我们希望从y的量化样本中重建x*和v*。我们的工作表明,只要在量化之前在测量值中加入均匀随机抖动,广义Lasso可以应用于信号的恢复。理论结果表明,量化的影响表现为独立的非结构化噪声。我们还在稀疏向量和低秩矩阵等几种情况下用数值方法验证了我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信