THE NON-LOCAL TIME PROBLEM FOR ONE CLASS OF PSEUDODIFFERENTIAL EQUATIONS WITH SMOOTH SYMBOLS

R. Kolisnyk, V. Gorodetskyi, O. Martynyuk
{"title":"THE NON-LOCAL TIME PROBLEM FOR ONE CLASS OF PSEUDODIFFERENTIAL EQUATIONS WITH SMOOTH SYMBOLS","authors":"R. Kolisnyk, V. Gorodetskyi, O. Martynyuk","doi":"10.31861/bmj2021.01.09","DOIUrl":null,"url":null,"abstract":"In this paper we investigate the differential-operator equation\n$$\n\\partial u (t, x) / \\partial t + \\varphi (i \\partial / \\partial x) u (t, x) = 0, \\quad (t, x) \\in (0, + \\infty) \\times \\mathbb {R} \\equiv \\Omega,\n$$\nwhere the function $ \\varphi \\in C ^ {\\infty} (\\mathbb {R}) $ and satisfies certain conditions. Using the explicit form of the spectral function of the self-adjoint operator $ i \\partial / \\partial x $, in $ L_2 (\\mathbb {R}) $ it is established that the operator $ \\varphi (i \\partial / \\partial x) $ can be understood as a pseudodifferential operator in a certain space of type $ S $. The evolution equation $ \\partial u / \\partial t + \\sqrt {I- \\Delta} u = 0 $, $ \\Delta = D_x ^ 2 $, with the fractionation differentiation operator $ \\sqrt { I- \\Delta} = \\varphi (i \\partial / \\partial x) $, where $ \\varphi (\\sigma) = (1+ \\sigma ^ 2) ^ {1/2} $, $ \\sigma \\in \\mathbb {R} $ is attributed to the considered equation.\n\nConsidered equation is a nonlocal multipoint problem with the initial function $ f $, which is an element of a space of type $ S $ or type $ S '$ which is a topologically conjugate with a space of type $ S $ space. The properties of the fundamental solution of such a problem are established, the correct solvability of the problem in the half-space $ t> 0 $ is proved, the representation of the solution in the form of a convolution of the fundamental solution with the initial function is found, the behavior of the solution $ u (t, \\cdot) $ for $ t \\to + \\infty $ (solution stabilization) in spaces of type $ S '$.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2021.01.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we investigate the differential-operator equation $$ \partial u (t, x) / \partial t + \varphi (i \partial / \partial x) u (t, x) = 0, \quad (t, x) \in (0, + \infty) \times \mathbb {R} \equiv \Omega, $$ where the function $ \varphi \in C ^ {\infty} (\mathbb {R}) $ and satisfies certain conditions. Using the explicit form of the spectral function of the self-adjoint operator $ i \partial / \partial x $, in $ L_2 (\mathbb {R}) $ it is established that the operator $ \varphi (i \partial / \partial x) $ can be understood as a pseudodifferential operator in a certain space of type $ S $. The evolution equation $ \partial u / \partial t + \sqrt {I- \Delta} u = 0 $, $ \Delta = D_x ^ 2 $, with the fractionation differentiation operator $ \sqrt { I- \Delta} = \varphi (i \partial / \partial x) $, where $ \varphi (\sigma) = (1+ \sigma ^ 2) ^ {1/2} $, $ \sigma \in \mathbb {R} $ is attributed to the considered equation. Considered equation is a nonlocal multipoint problem with the initial function $ f $, which is an element of a space of type $ S $ or type $ S '$ which is a topologically conjugate with a space of type $ S $ space. The properties of the fundamental solution of such a problem are established, the correct solvability of the problem in the half-space $ t> 0 $ is proved, the representation of the solution in the form of a convolution of the fundamental solution with the initial function is found, the behavior of the solution $ u (t, \cdot) $ for $ t \to + \infty $ (solution stabilization) in spaces of type $ S '$.
一类具有光滑符号的伪微分方程的非局部时间问题
本文研究了函数$ \varphi \in C ^ {\infty} (\mathbb {R}) $和满足一定条件的微分算子方程$$\partial u (t, x) / \partial t + \varphi (i \partial / \partial x) u (t, x) = 0, \quad (t, x) \in (0, + \infty) \times \mathbb {R} \equiv \Omega,$$。利用自伴随算子$ i \partial / \partial x $的谱函数的显式形式,在$ L_2 (\mathbb {R}) $中建立了算子$ \varphi (i \partial / \partial x) $可以理解为某一$ S $型空间中的伪微分算子。演化方程$ \partial u / \partial t + \sqrt {I- \Delta} u = 0 $, $ \Delta = D_x ^ 2 $,带有分馏微分算子$ \sqrt { I- \Delta} = \varphi (i \partial / \partial x) $,其中$ \varphi (\sigma) = (1+ \sigma ^ 2) ^ {1/2} $, $ \sigma \in \mathbb {R} $属于所考虑的方程。所考虑的方程是一个具有初始函数$ f $的非局部多点问题,该初始函数是类型为$ S $的空间或类型为$ S '$的空间的元素,该空间与类型为$ S $的空间拓扑共轭。建立了该问题的基本解的性质,证明了该问题在半空间$ t> 0 $中的正确可解性,得到了该问题的基本解与初始函数卷积的表示形式,得到了$ t \to + \infty $(解稳定)在$ S '$型空间中的解$ u (t, \cdot) $的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信