Predicting Electricity Usage Based on Deep Neural Network*

Ran Wei, Jinhai Wang, Qirui Gan, Xin Dang, Huiquan Wang
{"title":"Predicting Electricity Usage Based on Deep Neural Network*","authors":"Ran Wei, Jinhai Wang, Qirui Gan, Xin Dang, Huiquan Wang","doi":"10.1109/CIVEMSA45640.2019.9071602","DOIUrl":null,"url":null,"abstract":"This paper describes a deep neural network (DNN) based method for forecasting short-term hospital electricity usage. In Experiment One, a 4-layer DNN stack auto-encoder (SAE) based model is constructed to verify the accuracy of the method. Kilowatt-hours (kwh), capacitance (pf), power factor (phi), voltage (v), electricity reactive power (var), and electricity active power (w) are the main input variables. After training the model, the prediction accuracy can reach 77.60%. In the improvement phase, the model is altered to use more common variables; specifically, kilowatt-hours (kwh), electric charge (charg), average active power (avg-w), and maximum active power (max-w) are used as input variables. In order to optimize the training of the model, Experiment Two improves on the basis of the original DNN model. As a result, the prediction accuracy can be increased to 85.17%. Finally, the four power data with the best measurement are used, namely current(I), voltage(V), reactive power(Var) and active power(W), and the predicted result is 98.14%. This method indicates that the planning and scheduling of the hospital’ s electricity usage will also be improved.","PeriodicalId":293990,"journal":{"name":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA45640.2019.9071602","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes a deep neural network (DNN) based method for forecasting short-term hospital electricity usage. In Experiment One, a 4-layer DNN stack auto-encoder (SAE) based model is constructed to verify the accuracy of the method. Kilowatt-hours (kwh), capacitance (pf), power factor (phi), voltage (v), electricity reactive power (var), and electricity active power (w) are the main input variables. After training the model, the prediction accuracy can reach 77.60%. In the improvement phase, the model is altered to use more common variables; specifically, kilowatt-hours (kwh), electric charge (charg), average active power (avg-w), and maximum active power (max-w) are used as input variables. In order to optimize the training of the model, Experiment Two improves on the basis of the original DNN model. As a result, the prediction accuracy can be increased to 85.17%. Finally, the four power data with the best measurement are used, namely current(I), voltage(V), reactive power(Var) and active power(W), and the predicted result is 98.14%. This method indicates that the planning and scheduling of the hospital’ s electricity usage will also be improved.
基于深度神经网络的用电量预测*
本文提出了一种基于深度神经网络(DNN)的医院短期用电预测方法。在实验一中,构建了一个基于4层DNN堆栈自编码器(SAE)的模型来验证该方法的准确性。千瓦时(kwh)、电容(pf)、功率因数(phi)、电压(v)、无功功率(var)和有功功率(w)是主要的输入变量。模型经过训练后,预测准确率可达77.60%。在改进阶段,模型被修改为使用更常见的变量;具体来说,以千瓦时(kwh)、电荷(charge)、平均有功功率(avg-w)和最大有功功率(max-w)作为输入变量。为了优化模型的训练,实验二在原始DNN模型的基础上进行了改进。结果表明,预测精度可提高到85.17%。最后利用测量效果最好的电流(I)、电压(V)、无功功率(Var)和有功功率(W) 4个功率数据,预测结果为98.14%。该方法表明,医院的用电计划和调度也将得到改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信