Thermal status and workload prediction using support vector regression

Melissa Stockman, M. Awad, Haitham Akkary, R. Khanna
{"title":"Thermal status and workload prediction using support vector regression","authors":"Melissa Stockman, M. Awad, Haitham Akkary, R. Khanna","doi":"10.1109/ICEAC.2012.6471027","DOIUrl":null,"url":null,"abstract":"Because knowing information about the currently running workload and the thermal status of the processor is of importance for more adequate planning and allocating resources in microprocessor environments, we propose in this paper using support vector regression (SVR) to predict future processor thermal status as well as the currently running workload. We build two generalized SVR models trained with data from monitoring hardware performance counters collected from running SPEC2006 benchmarks. The first model predicts the Central Processing Unit's thermal status in Celsius with a percentage error of less than 10%. The second model predicts the current workload with a percentage error of 0.08% for a heterogeneous training set of 6 different integer and floating point benchmark workloads. Cross validation for the two models show the effectiveness of our approach and motivate follow on research.","PeriodicalId":436221,"journal":{"name":"2012 International Conference on Energy Aware Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Energy Aware Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAC.2012.6471027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Because knowing information about the currently running workload and the thermal status of the processor is of importance for more adequate planning and allocating resources in microprocessor environments, we propose in this paper using support vector regression (SVR) to predict future processor thermal status as well as the currently running workload. We build two generalized SVR models trained with data from monitoring hardware performance counters collected from running SPEC2006 benchmarks. The first model predicts the Central Processing Unit's thermal status in Celsius with a percentage error of less than 10%. The second model predicts the current workload with a percentage error of 0.08% for a heterogeneous training set of 6 different integer and floating point benchmark workloads. Cross validation for the two models show the effectiveness of our approach and motivate follow on research.
热状态和工作负荷预测使用支持向量回归
由于了解当前运行的工作负载和处理器的热状态信息对于在微处理器环境中更充分地规划和分配资源非常重要,因此我们在本文中建议使用支持向量回归(SVR)来预测未来的处理器热状态以及当前运行的工作负载。我们用从运行SPEC2006基准测试中收集的监控硬件性能计数器的数据训练了两个广义SVR模型。第一个模型以摄氏为单位预测中央处理器的热状态,百分比误差小于10%。第二个模型预测由6个不同的整数和浮点基准工作负载组成的异构训练集的当前工作负载,其百分比误差为0.08%。两个模型的交叉验证表明了我们的方法的有效性,并激励了后续的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信