Thermal Stability Analysis of Gevo Jet Fuel Using Ellipsometry

L. Nash, J. Klettlinger, Subith S. Vasu
{"title":"Thermal Stability Analysis of Gevo Jet Fuel Using Ellipsometry","authors":"L. Nash, J. Klettlinger, Subith S. Vasu","doi":"10.1115/GT2018-76209","DOIUrl":null,"url":null,"abstract":"Thermal stability is an important characteristic of alternative fuels that must be evaluated before they can be used in aviation engines. This characteristic is of great importance to the effectiveness of the fuel as a coolant and to the engine’s combustion performance. In this work, the thermal stability of Gevo fuel, an alcohol to jet fuel made from plant derived feedstock, was studied. This analysis was used to comment on the effectiveness of the current thermal stability test standard. This work was performed using a spectroscopic ellipsometer to measure the thickness of deposits left on aluminum substrates. It was observed that Gevo deposit thickness increased slowly up to 375 °C and much more rapidly after that point. Similar behavior was observed in JP-8 fuel. Comparisons were also made between color standard ratings and ellipsometric thickness measurements, and it was found that in some cases, darker colors did not indicate thicker deposits. Reference tubes were used to validate the optical models used in this work, and different optical constants were found to best model the results than what are published in the ASTM D3241 test method for thermal stability.","PeriodicalId":131179,"journal":{"name":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3: Coal, Biomass, and Alternative Fuels; Cycle Innovations; Electric Power; Industrial and Cogeneration; Organic Rankine Cycle Power Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Thermal stability is an important characteristic of alternative fuels that must be evaluated before they can be used in aviation engines. This characteristic is of great importance to the effectiveness of the fuel as a coolant and to the engine’s combustion performance. In this work, the thermal stability of Gevo fuel, an alcohol to jet fuel made from plant derived feedstock, was studied. This analysis was used to comment on the effectiveness of the current thermal stability test standard. This work was performed using a spectroscopic ellipsometer to measure the thickness of deposits left on aluminum substrates. It was observed that Gevo deposit thickness increased slowly up to 375 °C and much more rapidly after that point. Similar behavior was observed in JP-8 fuel. Comparisons were also made between color standard ratings and ellipsometric thickness measurements, and it was found that in some cases, darker colors did not indicate thicker deposits. Reference tubes were used to validate the optical models used in this work, and different optical constants were found to best model the results than what are published in the ASTM D3241 test method for thermal stability.
用椭圆偏振法分析Gevo喷气燃料的热稳定性
热稳定性是替代燃料的一项重要特性,在将其用于航空发动机之前必须对其进行评估。这一特性对燃油作为冷却剂的有效性和发动机的燃烧性能具有重要意义。本文研究了以植物为原料制备的醇制喷气燃料Gevo燃料的热稳定性。通过分析,对现行热稳定性测试标准的有效性进行了评价。这项工作是使用光谱椭偏仪来测量铝基板上留下的沉积物的厚度。观察到Gevo沉积厚度在375°C时缓慢增加,在375°C之后迅速增加。在JP-8燃料中也观察到类似的行为。还比较了颜色标准评级和椭偏厚度测量,发现在某些情况下,较深的颜色并不表示较厚的沉积物。使用参考管来验证本工作中使用的光学模型,发现不同的光学常数比ASTM D3241热稳定性测试方法中公布的结果更能模拟结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信