On the Construction of Diagonal Lyapunov Functions for Linear Systems

O. Pastravanu, M. Matcovschi
{"title":"On the Construction of Diagonal Lyapunov Functions for Linear Systems","authors":"O. Pastravanu, M. Matcovschi","doi":"10.1109/ISSCS.2007.4292773","DOIUrl":null,"url":null,"abstract":"The paper generalizes the concept of diagonal-type Lyapunov functions for arbitrary Holder vector p-norms, 1lesplesinfin. For p=2 this is equivalent with the usual quadratic form V(x)=xTDeltax, where Delta is a positive definite diagonal matrix, x is a real vector, and T denotes transposition. We provide concrete expressions for the Lyapunov function candidates that allow testing if a discrete-or continuous time system is asymptotically stable or not. These concrete expressions are constructed from the Perron or Perron-Frobenius eigenvectors of some matrices which either describe the system dynamics or majored the matrices defining the dynamics.","PeriodicalId":225101,"journal":{"name":"2007 International Symposium on Signals, Circuits and Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Symposium on Signals, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2007.4292773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The paper generalizes the concept of diagonal-type Lyapunov functions for arbitrary Holder vector p-norms, 1lesplesinfin. For p=2 this is equivalent with the usual quadratic form V(x)=xTDeltax, where Delta is a positive definite diagonal matrix, x is a real vector, and T denotes transposition. We provide concrete expressions for the Lyapunov function candidates that allow testing if a discrete-or continuous time system is asymptotically stable or not. These concrete expressions are constructed from the Perron or Perron-Frobenius eigenvectors of some matrices which either describe the system dynamics or majored the matrices defining the dynamics.
线性系统对角Lyapunov函数的构造
本文推广了任意Holder向量p-范数的对角型Lyapunov函数的概念。对于p=2,它等价于通常的二次形式V(x)= xtdelta,其中Delta是一个正定对角矩阵,x是一个实向量,T表示转置。我们提供了Lyapunov函数候选者的具体表达式,允许测试一个离散或连续时间系统是否渐近稳定。这些具体表达式是由一些矩阵的Perron或Perron- frobenius特征向量构成的,这些矩阵要么描述系统动力学,要么主要是定义动力学的矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信