Classification and statistical learning for detecting of switching time for switched linear systems

Lamaa Sellami, Kamel Abderrahim
{"title":"Classification and statistical learning for detecting of switching time for switched linear systems","authors":"Lamaa Sellami,&nbsp;Kamel Abderrahim","doi":"10.1016/j.jides.2015.10.002","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a new method for the detection of switching time is proposed for discrete-time linear switched systems, whose switching mechanism is unknown. The switching instant estimation problem consists to predict the mode switching for discrete behavior from a finite set of input–output data. First, the proposed method use a clustering and classification approach define the number of submodels and the data repartition. Then, by the use of statistical learning approach, we define the linear boundary separator of each validity region. Finally, a technique of detection given an explicitly estimation of switching time. A numerical example was reported to evaluate the proposed method.</p></div>","PeriodicalId":100792,"journal":{"name":"Journal of Innovation in Digital Ecosystems","volume":"2 1","pages":"Pages 13-19"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jides.2015.10.002","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovation in Digital Ecosystems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352664515000164","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a new method for the detection of switching time is proposed for discrete-time linear switched systems, whose switching mechanism is unknown. The switching instant estimation problem consists to predict the mode switching for discrete behavior from a finite set of input–output data. First, the proposed method use a clustering and classification approach define the number of submodels and the data repartition. Then, by the use of statistical learning approach, we define the linear boundary separator of each validity region. Finally, a technique of detection given an explicitly estimation of switching time. A numerical example was reported to evaluate the proposed method.

切换线性系统切换时间检测的分类与统计学习
针对开关机制未知的离散线性开关系统,提出了一种新的开关时间检测方法。切换瞬间估计问题包括从一组有限的输入输出数据中预测离散行为的模式切换。首先,采用聚类和分类的方法定义子模型的个数和数据的重划分。然后,利用统计学习的方法,定义每个有效区域的线性边界分隔符。最后,给出了一种显式估计开关时间的检测技术。最后通过数值算例对该方法进行了验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信