Using visual saliency for object tracking with particle filters

D. Sidibé, D. Fofi, F. Mériaudeau
{"title":"Using visual saliency for object tracking with particle filters","authors":"D. Sidibé, D. Fofi, F. Mériaudeau","doi":"10.5281/ZENODO.41894","DOIUrl":null,"url":null,"abstract":"This paper presents a robust tracking method based on the integration of visual saliency information into the particle filter framework. While particle filter has been successfully used for tracking non-rigid objects, it shows poor performances in the presence of large illumination variation, occlusions and when the target object and background have similar color distributions. We show that considering saliency information significantly improves the performance of particle filter based tracking. In particular, the proposed method is robust against occlusion and large illumination variation while requiring a reduced number of particles. Experimental results demonstrate the efficiency and effectiveness of our approach.","PeriodicalId":409817,"journal":{"name":"2010 18th European Signal Processing Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 18th European Signal Processing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.41894","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

This paper presents a robust tracking method based on the integration of visual saliency information into the particle filter framework. While particle filter has been successfully used for tracking non-rigid objects, it shows poor performances in the presence of large illumination variation, occlusions and when the target object and background have similar color distributions. We show that considering saliency information significantly improves the performance of particle filter based tracking. In particular, the proposed method is robust against occlusion and large illumination variation while requiring a reduced number of particles. Experimental results demonstrate the efficiency and effectiveness of our approach.
利用粒子滤波器的视觉显著性进行目标跟踪
提出了一种将视觉显著性信息整合到粒子滤波框架中的鲁棒跟踪方法。虽然粒子滤波已经成功地用于非刚性物体的跟踪,但在光照变化大、遮挡、目标物体和背景颜色分布相似的情况下,它的性能很差。研究表明,考虑显著性信息可以显著提高基于粒子滤波的跟踪性能。特别是,该方法对遮挡和大光照变化具有鲁棒性,同时需要的粒子数量减少。实验结果证明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信