Uncertainty-Based Deep Learning Networks for Limited Data Wetland User Models

Andrew Hoblitzell, M. Babbar‐Sebens, S. Mukhopadhyay
{"title":"Uncertainty-Based Deep Learning Networks for Limited Data Wetland User Models","authors":"Andrew Hoblitzell, M. Babbar‐Sebens, S. Mukhopadhyay","doi":"10.1109/AIVR.2018.00011","DOIUrl":null,"url":null,"abstract":"This paper discusses a method for dealing with limited data in deep networks based on calculating the uncertainty associated with remaining training data. The method was developed for the Watershed REstoration using Spatio-Temporal Optimization of REsources (WRESTORE) system, an interactive decision support system designed for performing multi-criteria decision analysis with a distributed system of conservation practices on the Eagle Creek Watershed in Indiana, USA. Our results show faster and more stable convergence when using an uncertainty-based incremental sampling method than when using a standard random incremental sampling method. This work describes the existing WRESTORE system, provides details about the implementation of our uncertainty-based incremental sampling method, and provides a discussion of our results and future work. The primary contribution of the paper is an uncertainty-based incremental sampling method which can be applied to limited data watershed design problems.","PeriodicalId":371868,"journal":{"name":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIVR.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper discusses a method for dealing with limited data in deep networks based on calculating the uncertainty associated with remaining training data. The method was developed for the Watershed REstoration using Spatio-Temporal Optimization of REsources (WRESTORE) system, an interactive decision support system designed for performing multi-criteria decision analysis with a distributed system of conservation practices on the Eagle Creek Watershed in Indiana, USA. Our results show faster and more stable convergence when using an uncertainty-based incremental sampling method than when using a standard random incremental sampling method. This work describes the existing WRESTORE system, provides details about the implementation of our uncertainty-based incremental sampling method, and provides a discussion of our results and future work. The primary contribution of the paper is an uncertainty-based incremental sampling method which can be applied to limited data watershed design problems.
基于不确定性的有限数据湿地用户模型深度学习网络
本文讨论了一种基于剩余训练数据不确定性计算的深度网络有限数据处理方法。该方法是为使用资源时空优化(WRESTORE)系统的流域恢复而开发的,该系统是一个交互式决策支持系统,旨在对美国印第安纳州鹰溪流域的分布式保护实践系统进行多标准决策分析。结果表明,采用基于不确定性的增量抽样方法比采用标准随机增量抽样方法收敛速度更快、更稳定。这项工作描述了现有的WRESTORE系统,提供了我们基于不确定性的增量采样方法的实现细节,并提供了我们的结果和未来工作的讨论。本文的主要贡献是基于不确定性的增量采样方法,该方法可应用于有限数据分水岭设计问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信