Live Demostration: Sensor fusion using EMG and vision for hand gesture classification in mobile applications

Enea Ceolini, Gemma Taverni, Lyes Khacef, M. Payvand, Elisa Donati
{"title":"Live Demostration: Sensor fusion using EMG and vision for hand gesture classification in mobile applications","authors":"Enea Ceolini, Gemma Taverni, Lyes Khacef, M. Payvand, Elisa Donati","doi":"10.1109/BIOCAS.2019.8919163","DOIUrl":null,"url":null,"abstract":"The demonstration shows a mobile application, called \"RELAX\", for hand gesture classification using multi-sensors fusion. In particular, we integrated the data collected by an electromyography (EMG) sensor with the events produced by an event-based vision sensor, the Dynamic Vision Sensor (DVS). The application runs real-time on any Android smartphone and it is able to recognize five gestures with an accuracy of up to 85%.This demonstration is associated with the track Bio-Inspired and Neuromorphic Circuits and Systems. Associated paper submission identifier: 8114.","PeriodicalId":222264,"journal":{"name":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIOCAS.2019.8919163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The demonstration shows a mobile application, called "RELAX", for hand gesture classification using multi-sensors fusion. In particular, we integrated the data collected by an electromyography (EMG) sensor with the events produced by an event-based vision sensor, the Dynamic Vision Sensor (DVS). The application runs real-time on any Android smartphone and it is able to recognize five gestures with an accuracy of up to 85%.This demonstration is associated with the track Bio-Inspired and Neuromorphic Circuits and Systems. Associated paper submission identifier: 8114.
现场演示:传感器融合使用肌电图和视觉手势分类在移动应用程序
该演示展示了一个名为“RELAX”的移动应用程序,用于使用多传感器融合进行手势分类。特别是,我们将肌电(EMG)传感器收集的数据与基于事件的视觉传感器动态视觉传感器(DVS)产生的事件相结合。这款应用可以在任何安卓智能手机上实时运行,它能够识别五种手势,准确率高达85%。该演示与生物启发和神经形态电路和系统相关。相关论文提交标识符:8114。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信