A Methodology for Determining Static Mode Shapes of a Compliant Mechanism Using the Pseudo-Rigid-Body Model (PRBM) Concept and the Degrees-of-Freedom Analysis

Sushrut G. Bapat, Pratheek Bagivalu Prasanna, A. Midha
{"title":"A Methodology for Determining Static Mode Shapes of a Compliant Mechanism Using the Pseudo-Rigid-Body Model (PRBM) Concept and the Degrees-of-Freedom Analysis","authors":"Sushrut G. Bapat, Pratheek Bagivalu Prasanna, A. Midha","doi":"10.1115/detc2019-98497","DOIUrl":null,"url":null,"abstract":"\n Traditionally, the deflected configuration of compliant segments is determined through rigorous mathematical analysis using Newtonian mechanics. Application of these principles in evaluating the deformed configuration of compliant mechanisms, containing a variety of segment types, becomes cumbersome. This paper introduces a methodology to determine the expected deflected configuration(s) of a compliant mechanism, for a given set of load and/or displacement boundary conditions. The method utilizes the principle of minimum total potential energy, in conjunction with the degrees-of-freedom analysis and the pseudo-rigid-body model concept. The static mode shape(s) of compliant segments are integrated in identifying the possible functional configuration(s) of a given compliant mechanism’s structural configuration. The methodology, in turn, also facilitates the in situ determination of the deformed configuration of the constituent compliant segments. It thus assists in the identification of an appropriate pseudo-rigid-body model for design and analysis of a compliant mechanism.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-98497","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally, the deflected configuration of compliant segments is determined through rigorous mathematical analysis using Newtonian mechanics. Application of these principles in evaluating the deformed configuration of compliant mechanisms, containing a variety of segment types, becomes cumbersome. This paper introduces a methodology to determine the expected deflected configuration(s) of a compliant mechanism, for a given set of load and/or displacement boundary conditions. The method utilizes the principle of minimum total potential energy, in conjunction with the degrees-of-freedom analysis and the pseudo-rigid-body model concept. The static mode shape(s) of compliant segments are integrated in identifying the possible functional configuration(s) of a given compliant mechanism’s structural configuration. The methodology, in turn, also facilitates the in situ determination of the deformed configuration of the constituent compliant segments. It thus assists in the identification of an appropriate pseudo-rigid-body model for design and analysis of a compliant mechanism.
基于伪刚体模型和自由度分析的柔顺机构静力模态振型确定方法
传统上,柔顺段的偏转构型是通过牛顿力学的严格数学分析来确定的。应用这些原理来评估包含多种节段类型的柔性机构的变形配置,变得很麻烦。本文介绍了一种方法,以确定一个柔性机构的预期偏转配置(s),为一组给定的负载和/或位移边界条件。该方法利用最小总势能原理,结合自由度分析和拟刚体模型概念。在确定给定柔顺机构结构构型的可能功能构型时,综合了柔顺节段的静态模态振型。该方法,反过来,也有利于在原地确定的变形形态的组成柔顺段。因此,它有助于确定用于设计和分析柔性机构的适当的伪刚体模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信