Multiple faces tracking using local statistics

S. Harasse, L. Bonnaud, M. Desvignes
{"title":"Multiple faces tracking using local statistics","authors":"S. Harasse, L. Bonnaud, M. Desvignes","doi":"10.1109/ISPA.2005.195377","DOIUrl":null,"url":null,"abstract":"Our project is to design algorithms to count people in vehicles such as buses from surveillance cameras' video streams. This article presents a method of detection and tracking of multiple faces in a video by using a model of first and second order local moments. The three essential steps of our system are the skin color modeling, the probabilistic shape model and Bayesian decision, and the tracking. An iterative process estimates the position and shape of multiple faces in images, and tracks them. Tracking updates an object history including all spatial and temporal information about this object. Location and size of this tracking object are predicted by constant speed motion analysis and learned trajectories. Results on office and buses video are promising.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195377","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Our project is to design algorithms to count people in vehicles such as buses from surveillance cameras' video streams. This article presents a method of detection and tracking of multiple faces in a video by using a model of first and second order local moments. The three essential steps of our system are the skin color modeling, the probabilistic shape model and Bayesian decision, and the tracking. An iterative process estimates the position and shape of multiple faces in images, and tracks them. Tracking updates an object history including all spatial and temporal information about this object. Location and size of this tracking object are predicted by constant speed motion analysis and learned trajectories. Results on office and buses video are promising.
多面跟踪使用本地统计
我们的项目是设计算法,从监控摄像头的视频流中计算公共汽车等车辆上的人数。本文提出了一种利用一阶和二阶局部矩模型对视频中多个人脸进行检测和跟踪的方法。该系统的三个基本步骤是肤色建模,概率形状建模和贝叶斯决策,以及跟踪。迭代过程估计图像中多个面的位置和形状,并跟踪它们。跟踪更新对象历史,包括该对象的所有空间和时间信息。通过等速运动分析和学习轨迹预测跟踪对象的位置和大小。在办公室和公共汽车上的视频效果很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信