{"title":"Organizational texts classification using artificial immune recognition systems","authors":"N. Forouzideh, M. Mahmoudi, K. Badie","doi":"10.1109/CIBCB.2011.5948456","DOIUrl":null,"url":null,"abstract":"This paper outlines the use of Artificial Immune Recognition System (AIRS) within the field of text/document classification. Various versions of AIRS including AIRS1, AIRS2, Parallel AIRS and Modified AIRS with Fuzzy KNN are applied to classify the mode of a text's content which is organized for helping users with their organizational tasks. In this regard, 7 major features as inputs with 3 nominal values of Low, Medium, and High are chosen to classify texts into 6 organizational functionality classes. Results of experimentation on a dataset including 540 data show the fact that different versions of AIRS, performs better compared to multi-layer perceptron and radial basis function as simple neural approaches. Due to the high performance of this approach, it is expected to be successfully applicable to a wide range of content mode classification issues in decision support environment.","PeriodicalId":395505,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIBCB.2011.5948456","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
This paper outlines the use of Artificial Immune Recognition System (AIRS) within the field of text/document classification. Various versions of AIRS including AIRS1, AIRS2, Parallel AIRS and Modified AIRS with Fuzzy KNN are applied to classify the mode of a text's content which is organized for helping users with their organizational tasks. In this regard, 7 major features as inputs with 3 nominal values of Low, Medium, and High are chosen to classify texts into 6 organizational functionality classes. Results of experimentation on a dataset including 540 data show the fact that different versions of AIRS, performs better compared to multi-layer perceptron and radial basis function as simple neural approaches. Due to the high performance of this approach, it is expected to be successfully applicable to a wide range of content mode classification issues in decision support environment.