Multiple parameter cluster analysis in a multiple language learning system

C. Troussas, M. Virvou, Efthymios Alepis
{"title":"Multiple parameter cluster analysis in a multiple language learning system","authors":"C. Troussas, M. Virvou, Efthymios Alepis","doi":"10.1109/IISA.2013.6623714","DOIUrl":null,"url":null,"abstract":"In this paper, we present our multiple parameter cluster analysis in our multiple language learning system. Towards this direction, we have used algorithmic approaches residing in the field of machine learning. Multiple parameter cluster analysis is conducted by the k-means clustering algorithm which takes as input seven important users' characteristics in order to initialize the process. The clustering is conducted by k-means clustering algorithm, which takes as input multiple user characteristics. The incorporation of k-means clustering is used to address several barriers posed by the heterogeneous learning audience of educational systems. After determining in which cluster each new student belongs, the system can reason about this specific student, adapting its behavior to the student's needs, performance and preferences.","PeriodicalId":261368,"journal":{"name":"IISA 2013","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IISA 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IISA.2013.6623714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we present our multiple parameter cluster analysis in our multiple language learning system. Towards this direction, we have used algorithmic approaches residing in the field of machine learning. Multiple parameter cluster analysis is conducted by the k-means clustering algorithm which takes as input seven important users' characteristics in order to initialize the process. The clustering is conducted by k-means clustering algorithm, which takes as input multiple user characteristics. The incorporation of k-means clustering is used to address several barriers posed by the heterogeneous learning audience of educational systems. After determining in which cluster each new student belongs, the system can reason about this specific student, adapting its behavior to the student's needs, performance and preferences.
多语言学习系统中的多参数聚类分析
在本文中,我们提出了在我们的多语言学习系统中的多参数聚类分析。在这个方向上,我们使用了机器学习领域的算法方法。采用k-means聚类算法进行多参数聚类分析,将7个重要用户特征作为输入,对过程进行初始化。聚类采用k-means聚类算法,该算法将多个用户特征作为输入。k-均值聚类的结合用于解决教育系统中异构学习受众所造成的几个障碍。在确定每个新生属于哪个集群之后,系统可以对这个特定的学生进行推理,并根据学生的需求、表现和偏好调整其行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信