Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs

Wenjian Sun, Dongsheng Wu, Yang Luo, Lu Liu, Hongjing Zhang, Shuang Wu, Yan Zhang, Chenglong Wang, Houjun Zheng, Jiang Shen, Chunbo Luo
{"title":"Deep Log-Normal Label Distribution Learning for Pneumoconiosis Staging on Chest Radiographs","authors":"Wenjian Sun, Dongsheng Wu, Yang Luo, Lu Liu, Hongjing Zhang, Shuang Wu, Yan Zhang, Chenglong Wang, Houjun Zheng, Jiang Shen, Chunbo Luo","doi":"10.1109/CBMS55023.2022.00073","DOIUrl":null,"url":null,"abstract":"Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumo-coniosis staging by exploring the intrinsic stage distribution pat-terns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision, Sensitivity, Specificity, F1-score and Area Under the Curve.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pneumoconiosis staging has been a challenging task for deep neural networks due to the stage ambiguity in early pneumoconiosis. In this article, we propose a deep log-normal label distribution learning method named DLN-LDL for pneumo-coniosis staging by exploring the intrinsic stage distribution pat-terns of pneumoconiosis. DLN-LDL effectively prevents the deep network from overfitting features in ambiguous chest radiographs that are irrelevant to the stage to which they belong by replacing the one-hot labels with log-normally distributed vectors. The experiments on our collected pneumoconiosis dataset confirm that the proposed DLN-LDL algorithm outperforms other classical methods in terms of Accuracy, Precision, Sensitivity, Specificity, F1-score and Area Under the Curve.
胸片上尘肺分期的深度对数正态标签分布学习
由于早期尘肺分期的不确定性,对深度神经网络来说,尘肺分期一直是一项具有挑战性的任务。在本文中,我们通过探索尘肺的内在阶段分布模式,提出了一种深度对数正态标签分布学习方法DLN-LDL用于尘肺分期。DLN-LDL通过用对数正态分布向量替换单热标签,有效地防止深度网络过度拟合与它们所属阶段无关的模糊胸片特征。在收集的尘肺数据集上的实验证实,所提出的DLN-LDL算法在准确度、精密度、灵敏度、特异性、f1评分和曲线下面积等方面优于其他经典方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信