QR decomposition based recursive least square adaptation of autoregressive EEG features

Muddasir Ahmad, M. Aqil
{"title":"QR decomposition based recursive least square adaptation of autoregressive EEG features","authors":"Muddasir Ahmad, M. Aqil","doi":"10.1109/INTELSE.2016.7475176","DOIUrl":null,"url":null,"abstract":"Electroencephalography (EEG) has potential medical, military and industrial applications. To date, no method is said to be a standardized EEG estimator. The aim of this study is to realize QR decomposition based recursive least square estimator for EEG feature extraction. The features are modeled as adaptive autoregressive model. Linear discriminant analysis is performed to classify the extracted features for a dual class experiment. For validation, right- and left-hand movement imaginations based EEG experiments are conducted. Further validation, carried out by a comparative study with other adaptive (least mean squares and recursive least squares) algorithms, demonstrates the effectiveness of the proposed method.","PeriodicalId":127671,"journal":{"name":"2016 International Conference on Intelligent Systems Engineering (ICISE)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Intelligent Systems Engineering (ICISE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INTELSE.2016.7475176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Electroencephalography (EEG) has potential medical, military and industrial applications. To date, no method is said to be a standardized EEG estimator. The aim of this study is to realize QR decomposition based recursive least square estimator for EEG feature extraction. The features are modeled as adaptive autoregressive model. Linear discriminant analysis is performed to classify the extracted features for a dual class experiment. For validation, right- and left-hand movement imaginations based EEG experiments are conducted. Further validation, carried out by a comparative study with other adaptive (least mean squares and recursive least squares) algorithms, demonstrates the effectiveness of the proposed method.
基于QR分解的自回归脑电特征递归最小二乘自适应
脑电图(EEG)具有潜在的医学、军事和工业应用。迄今为止,还没有一种方法被认为是标准化的脑电图估计器。本研究的目的是实现基于QR分解的递归最小二乘估计的脑电信号特征提取。采用自适应自回归模型对特征进行建模。采用线性判别分析对提取的特征进行分类,进行双类实验。为验证该方法的有效性,分别进行了基于左、右运动想象的脑电实验。通过与其他自适应(最小均方和递归最小二乘)算法的比较研究,进一步验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信