Feature Identification and Extraction in Function Fields

John C. Anderson, Luke J. Gosink, M. Duchaineau, K. Joy
{"title":"Feature Identification and Extraction in Function Fields","authors":"John C. Anderson, Luke J. Gosink, M. Duchaineau, K. Joy","doi":"10.2312/VisSym/EuroVis07/195-201","DOIUrl":null,"url":null,"abstract":"We present interactive techniques for identifying and extracting features in function fields. Function fields map points in n-dimensional Euclidean space to 1-dimensional scalar functions. Visual feature identification is ac- complished by interactively rendering scalar distance fields, constructed by applying a function-space distance metric over the function field. Combining visual exploration with feature extraction queries, formulated as a set of function-space constraints, facilitates quantitative analysis and annotation. Numerous application domains give rise to function fields. We present results for two-dimensional hyperspectral images, and a simulated time-varying, three-dimensional air quality dataset.","PeriodicalId":224719,"journal":{"name":"Eurographics Conference on Visualization","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Conference on Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/VisSym/EuroVis07/195-201","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

We present interactive techniques for identifying and extracting features in function fields. Function fields map points in n-dimensional Euclidean space to 1-dimensional scalar functions. Visual feature identification is ac- complished by interactively rendering scalar distance fields, constructed by applying a function-space distance metric over the function field. Combining visual exploration with feature extraction queries, formulated as a set of function-space constraints, facilitates quantitative analysis and annotation. Numerous application domains give rise to function fields. We present results for two-dimensional hyperspectral images, and a simulated time-varying, three-dimensional air quality dataset.
函数域特征识别与提取
我们提出了用于识别和提取函数域中特征的交互式技术。函数场将n维欧几里德空间中的点映射为1维标量函数。视觉特征识别是通过交互呈现标量距离域来完成的,标量距离域是通过在函数域上应用函数空间距离度量来构建的。将视觉探索与特征提取查询相结合,形成一组功能空间约束,便于定量分析和注释。许多应用领域产生了功能域。我们展示了二维高光谱图像的结果,以及模拟时变的三维空气质量数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信