Image symmetries: The right balance between evenness and perception

Fabrizio Guerrini, Alessandro Gnutti, R. Leonardi
{"title":"Image symmetries: The right balance between evenness and perception","authors":"Fabrizio Guerrini, Alessandro Gnutti, R. Leonardi","doi":"10.1109/IWSSIP.2017.7965605","DOIUrl":null,"url":null,"abstract":"A recent and fascinating interest in computational symmetry for computer vision and computer graphics applications has led to a remarkable realization of new symmetry detection algorithms. Such a concern is culminated in a symmetry detection competition as a workshop affiliated with the 2011 and 2013 CVPR Conferences. In this paper, we propose a method based on the computation of the symmetry level associated to each pixel. Such a value is determined through the energy balance of the even/odd decomposition of a patch with respect to a central axis (which is equivalent to estimate the middle point of a row-wise convolution). Peaks localization along the perpendicular direction of each angle allows to identify possible symmetry axes. The evaluation of a feature based on gradient information allows to establish a classification confidence for each detected axis. By adopting the aforementioned rigorous validation framework, the proposed method indicates significant performance increase.","PeriodicalId":302860,"journal":{"name":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Systems, Signals and Image Processing (IWSSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWSSIP.2017.7965605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A recent and fascinating interest in computational symmetry for computer vision and computer graphics applications has led to a remarkable realization of new symmetry detection algorithms. Such a concern is culminated in a symmetry detection competition as a workshop affiliated with the 2011 and 2013 CVPR Conferences. In this paper, we propose a method based on the computation of the symmetry level associated to each pixel. Such a value is determined through the energy balance of the even/odd decomposition of a patch with respect to a central axis (which is equivalent to estimate the middle point of a row-wise convolution). Peaks localization along the perpendicular direction of each angle allows to identify possible symmetry axes. The evaluation of a feature based on gradient information allows to establish a classification confidence for each detected axis. By adopting the aforementioned rigorous validation framework, the proposed method indicates significant performance increase.
图像对称:在均匀性和观感之间的正确平衡
最近,计算机视觉和计算机图形学应用对计算对称性的兴趣引起了新的对称检测算法的显著实现。这种关注在2011年和2013年CVPR会议附属的对称检测竞赛中达到高潮。在本文中,我们提出了一种基于计算与每个像素相关的对称水平的方法。这样的值是通过一个补丁相对于一个中心轴的偶/奇分解的能量平衡来确定的(这相当于估计一个逐行卷积的中点)。沿着每个角的垂直方向的峰定位允许识别可能的对称轴。基于梯度信息的特征评估允许为每个检测到的轴建立分类置信度。通过采用上述严格的验证框架,该方法的性能得到了显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信