{"title":"Dynamic impedance matching network for RF energy harvesting systems","authors":"C. Felini, M. Merenda, F. D. Corte","doi":"10.1109/RFID-TA.2014.6934206","DOIUrl":null,"url":null,"abstract":"In this paper, an RF energy harvesting system with an improved dynamic impedance matching network (DyIMN) is proposed. With this solution, the minimum RF input power required for circuit operation is -10 dBm, allowing a working distance of 1.5 m from an RF energy source of 30dBm. The system was fabricated on an FR4 substrate using off-the-shelf discrete components and it is able to convert RF energy to regulated DC voltage in order to power general-purpose electronic devices. The experimental results demonstrate the capability of the system to obtain an optimum impedance matching with a received RF power in the range -10 - +5dBm.","PeriodicalId":143130,"journal":{"name":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE RFID Technology and Applications Conference (RFID-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID-TA.2014.6934206","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Abstract
In this paper, an RF energy harvesting system with an improved dynamic impedance matching network (DyIMN) is proposed. With this solution, the minimum RF input power required for circuit operation is -10 dBm, allowing a working distance of 1.5 m from an RF energy source of 30dBm. The system was fabricated on an FR4 substrate using off-the-shelf discrete components and it is able to convert RF energy to regulated DC voltage in order to power general-purpose electronic devices. The experimental results demonstrate the capability of the system to obtain an optimum impedance matching with a received RF power in the range -10 - +5dBm.