{"title":"AN ANALYSIS OF DEMOSAICING FOR PLENOPTIC CAPTURE BASED ON RAY OPTICS","authors":"Yongwei Li, R. Olsson, Mårten Sjöström","doi":"10.1109/3DTV.2018.8478476","DOIUrl":null,"url":null,"abstract":"The plenoptic camera is gaining more and more attention as it captures the 4D light field of a scene with a single shot and enables a wide range of post-processing applications. However, the pre-processing steps for captured raw data, such as demosaicing, have been overlooked. Most existing decoding pipelines for plenoptic cameras still apply demosaicing schemes which are developed for conventional cameras. In this paper, we analyze the sampling pattern of microlens-based plenoptic cameras by ray-tracing techniques and ray phase space analysis. The goal of this work is to demonstrate guidelines and principles for demosaicing the plenoptic captures by taking the unique microlens array design into account. We show that the sampling of the plenoptic camera behaves differently from that of a conventional camera and the desired demosaicing scheme is depth-dependent.","PeriodicalId":267389,"journal":{"name":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 - 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3DTV.2018.8478476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The plenoptic camera is gaining more and more attention as it captures the 4D light field of a scene with a single shot and enables a wide range of post-processing applications. However, the pre-processing steps for captured raw data, such as demosaicing, have been overlooked. Most existing decoding pipelines for plenoptic cameras still apply demosaicing schemes which are developed for conventional cameras. In this paper, we analyze the sampling pattern of microlens-based plenoptic cameras by ray-tracing techniques and ray phase space analysis. The goal of this work is to demonstrate guidelines and principles for demosaicing the plenoptic captures by taking the unique microlens array design into account. We show that the sampling of the plenoptic camera behaves differently from that of a conventional camera and the desired demosaicing scheme is depth-dependent.