Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level

Takashi Kato
{"title":"Asymptotic Analysis for Spectral Risk Measures Parameterized by Confidence Level","authors":"Takashi Kato","doi":"10.4236/jmf.2018.81015","DOIUrl":null,"url":null,"abstract":"We study the asymptotic behavior of the difference $\\Delta \\rho ^{X, Y}_\\alpha := \\rho _\\alpha (X + Y) - \\rho _\\alpha (X)$ as $\\alpha \\rightarrow 1$, where $\\rho_\\alpha $ is a risk measure equipped with a confidence level parameter $0 < \\alpha < 1$, and where $X$ and $Y$ are non-negative random variables whose tail probability functions are regularly varying. The case where $\\rho _\\alpha $ is the value-at-risk (VaR) at $\\alpha $, is treated in Kato (2017). This paper investigates the case where $\\rho _\\alpha $ is a spectral risk measure that converges to the worst-case risk measure as $\\alpha \\rightarrow 1$. We give the asymptotic behavior of the difference between the marginal risk contribution and the Euler contribution of $Y$ to the portfolio $X + Y$. Similarly to Kato (2017), our results depend primarily on the relative magnitudes of the thicknesses of the tails of $X$ and $Y$. We also conducted a numerical experiment, finding that when the tail of $X$ is sufficiently thicker than that of $Y$, $\\Delta \\rho ^{X, Y}_\\alpha $ does not increase monotonically with $\\alpha$ and takes a maximum at a confidence level strictly less than $1$.","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"127 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jmf.2018.81015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the asymptotic behavior of the difference $\Delta \rho ^{X, Y}_\alpha := \rho _\alpha (X + Y) - \rho _\alpha (X)$ as $\alpha \rightarrow 1$, where $\rho_\alpha $ is a risk measure equipped with a confidence level parameter $0 < \alpha < 1$, and where $X$ and $Y$ are non-negative random variables whose tail probability functions are regularly varying. The case where $\rho _\alpha $ is the value-at-risk (VaR) at $\alpha $, is treated in Kato (2017). This paper investigates the case where $\rho _\alpha $ is a spectral risk measure that converges to the worst-case risk measure as $\alpha \rightarrow 1$. We give the asymptotic behavior of the difference between the marginal risk contribution and the Euler contribution of $Y$ to the portfolio $X + Y$. Similarly to Kato (2017), our results depend primarily on the relative magnitudes of the thicknesses of the tails of $X$ and $Y$. We also conducted a numerical experiment, finding that when the tail of $X$ is sufficiently thicker than that of $Y$, $\Delta \rho ^{X, Y}_\alpha $ does not increase monotonically with $\alpha$ and takes a maximum at a confidence level strictly less than $1$.
置信水平参数化谱风险测度的渐近分析
我们研究差分$\Delta \rho ^{X, Y}_\alpha := \rho _\alpha (X + Y) - \rho _\alpha (X)$的渐近行为为$\alpha \rightarrow 1$,其中$\rho_\alpha $是具有置信水平参数$0 < \alpha < 1$的风险度量,其中$X$和$Y$是尾部概率函数有规则变化的非负随机变量。$\rho _\alpha $是$\alpha $的风险价值(VaR)的情况,在Kato(2017)中进行了处理。本文研究了$\rho _\alpha $是收敛于最坏风险测度$\alpha \rightarrow 1$的谱风险测度的情况。我们给出了边际风险贡献与$Y$对投资组合的欧拉贡献之差的渐近行为$X + Y$。与Kato(2017)类似,我们的结果主要取决于$X$和$Y$尾部厚度的相对大小。我们还进行了数值实验,发现当$X$的尾部比$Y$的尾部足够厚时,$\Delta \rho ^{X, Y}_\alpha $不随$\alpha$单调增加,并在严格小于$1$的置信水平上取最大值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信