Adaboost for improving classification of left and right hand motor imagery tasks

Pei Xiaomei, Z. Chong-xun, Xu Jin, Bin Guangyu
{"title":"Adaboost for improving classification of left and right hand motor imagery tasks","authors":"Pei Xiaomei, Z. Chong-xun, Xu Jin, Bin Guangyu","doi":"10.1109/ICNIC.2005.1499830","DOIUrl":null,"url":null,"abstract":"The Adaboost classifier with Fisher discriminant analysis (FDA) as base learner is proposed to discriminate the left and right hand motor imagery tasks in this paper. Firstly, multichannel complexity and held power of EEG within 10-12Hz over two brain hemispheres are extracted as feature vectors, which characterize the brain features during hand motor imagination. Then with the Adaboost classifier, the satisfactory classification results on test data can be obtained. The maximum classification accuracy reaches to 89.29% and the maximum mutual information is 0.59bit. The primary results show that the Adaboost could effectively improve the classification accuracy of left and right hand motor imagery tasks, so that it has great potentials to mental tasks classification for BCI.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The Adaboost classifier with Fisher discriminant analysis (FDA) as base learner is proposed to discriminate the left and right hand motor imagery tasks in this paper. Firstly, multichannel complexity and held power of EEG within 10-12Hz over two brain hemispheres are extracted as feature vectors, which characterize the brain features during hand motor imagination. Then with the Adaboost classifier, the satisfactory classification results on test data can be obtained. The maximum classification accuracy reaches to 89.29% and the maximum mutual information is 0.59bit. The primary results show that the Adaboost could effectively improve the classification accuracy of left and right hand motor imagery tasks, so that it has great potentials to mental tasks classification for BCI.
Adaboost用于改进左手和右手运动想象任务的分类
本文提出了以Fisher判别分析(FDA)为基础学习器的Adaboost分类器,用于区分左手和右手运动意象任务。首先,提取两个脑半球10-12Hz范围内脑电信号的多通道复杂度和保持功率作为特征向量,表征手部运动想象过程中的大脑特征;然后利用Adaboost分类器对试验数据进行分类,得到满意的分类结果。最大分类准确率达到89.29%,最大互信息为0.59bit。初步结果表明,Adaboost可以有效提高左手和右手运动意象任务的分类准确率,因此在脑机接口的心理任务分类中具有很大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信