Sams-Net: A Sliced Attention-based Neural Network for Music Source Separation

Tingle Li, Jiawei Chen, Haowen Hou, Ming Li
{"title":"Sams-Net: A Sliced Attention-based Neural Network for Music Source Separation","authors":"Tingle Li, Jiawei Chen, Haowen Hou, Ming Li","doi":"10.1109/ISCSLP49672.2021.9362081","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) or Long Short-term Memory (LSTM) based models with the input of spectrogram or waveforms are commonly used for deep learning based audio source separation. In this paper, we propose a Sliced Attention-based neural network (Sams-Net) in the spectrogram domain for the music source separation task. It enables spectral feature interactions with multi-head attention mechanism, achieves easier parallel computing and has a larger receptive field com-pared with LSTMs and CNNs respectively. Experimental results on the MUSDB18 dataset show that the proposed method, with fewer parameters, outperforms most of the state-of-the-art DNN-based methods.","PeriodicalId":279828,"journal":{"name":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Chinese Spoken Language Processing (ISCSLP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCSLP49672.2021.9362081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Convolutional Neural Network (CNN) or Long Short-term Memory (LSTM) based models with the input of spectrogram or waveforms are commonly used for deep learning based audio source separation. In this paper, we propose a Sliced Attention-based neural network (Sams-Net) in the spectrogram domain for the music source separation task. It enables spectral feature interactions with multi-head attention mechanism, achieves easier parallel computing and has a larger receptive field com-pared with LSTMs and CNNs respectively. Experimental results on the MUSDB18 dataset show that the proposed method, with fewer parameters, outperforms most of the state-of-the-art DNN-based methods.
Sams-Net:一种用于音乐源分离的基于注意力的神经网络
基于卷积神经网络(CNN)或长短期记忆(LSTM)模型,输入谱图或波形,通常用于基于深度学习的音频源分离。在本文中,我们提出了一种基于切片注意力的神经网络(Sams-Net),用于谱图域的音乐源分离任务。与lstm和cnn相比,它可以实现谱特征与多头注意机制的交互,实现更容易的并行计算,并且具有更大的接受野。在MUSDB18数据集上的实验结果表明,该方法参数较少,优于大多数最先进的基于dnn的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信