CONCISE: An Algorithm for Mining Positive and Negative Non-Redundant Association Rules

Bemarisika Parfait, Totohasina André
{"title":"CONCISE: An Algorithm for Mining Positive and Negative Non-Redundant Association Rules","authors":"Bemarisika Parfait, Totohasina André","doi":"10.52458/978-93-91842-08-6-2","DOIUrl":null,"url":null,"abstract":"One challenge problem in association rules mining is the huge size of the extracted rule set many of which are uninteresting and redundant. In this paper, we propose an efficient algorithm CONCISE for generating all non-redundant positive and negative association rules. We first introduce an algorithm CMG (Closed, Maximal and Generators) for mining all frequent closed, maximal and their generators itemsets from large transaction databases. We then define four new bases representing non-redundant association rules from these frequent itemsets. We prove that these bases significantly reduce the number of extracted rules. We show the efficiency of our algorithm by computational experiments compared with existing algorithms.","PeriodicalId":247665,"journal":{"name":"SCRS Conference Proceedings on Intelligent Systems","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SCRS Conference Proceedings on Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52458/978-93-91842-08-6-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

One challenge problem in association rules mining is the huge size of the extracted rule set many of which are uninteresting and redundant. In this paper, we propose an efficient algorithm CONCISE for generating all non-redundant positive and negative association rules. We first introduce an algorithm CMG (Closed, Maximal and Generators) for mining all frequent closed, maximal and their generators itemsets from large transaction databases. We then define four new bases representing non-redundant association rules from these frequent itemsets. We prove that these bases significantly reduce the number of extracted rules. We show the efficiency of our algorithm by computational experiments compared with existing algorithms.
简练:一种挖掘正负非冗余关联规则的算法
关联规则挖掘中的一个挑战问题是所提取的规则集规模巨大,其中许多是无趣的和冗余的。本文提出了一种高效的生成所有非冗余正关联规则和负关联规则的简洁算法。首先介绍了一种CMG (Closed, maximum and Generators)算法,用于从大型事务数据库中挖掘所有频繁的Closed, maximum及其生成器项集。然后,我们定义了四个新的基,表示来自这些频繁项集的非冗余关联规则。我们证明了这些基显著地减少了提取规则的数量。通过计算实验与现有算法进行了比较,证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信