Cocktail Ensemble for Regression

Yang Yu, Zhi-Hua Zhou, K. Ting
{"title":"Cocktail Ensemble for Regression","authors":"Yang Yu, Zhi-Hua Zhou, K. Ting","doi":"10.1109/ICDM.2007.60","DOIUrl":null,"url":null,"abstract":"This paper is motivated to improve the performance of individual ensembles using a hybrid mechanism in the regression setting. Based on an error-ambiguity decomposition, we formally analyze the optimal linear combination of two base ensembles, which is then extended to multiple individual ensembles via pairwise combinations. The Cocktail ensemble approach is proposed based on this analysis. Experiments over a broad range of data sets show that the proposed approach outperforms the individual ensembles, two other methods of ensemble combination, and two state-of-the-art regression approaches.","PeriodicalId":233758,"journal":{"name":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Seventh IEEE International Conference on Data Mining (ICDM 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2007.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

This paper is motivated to improve the performance of individual ensembles using a hybrid mechanism in the regression setting. Based on an error-ambiguity decomposition, we formally analyze the optimal linear combination of two base ensembles, which is then extended to multiple individual ensembles via pairwise combinations. The Cocktail ensemble approach is proposed based on this analysis. Experiments over a broad range of data sets show that the proposed approach outperforms the individual ensembles, two other methods of ensemble combination, and two state-of-the-art regression approaches.
回归的鸡尾酒集合
本文的动机是在回归设置中使用混合机制来提高单个集成的性能。基于误差模糊分解,形式化地分析了两个基本集成的最优线性组合,然后通过两两组合将其扩展到多个单独的集成。在此基础上提出了鸡尾酒集合方法。在广泛的数据集上进行的实验表明,所提出的方法优于单个集成、另外两种集成组合方法和两种最先进的回归方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信