Roach Infestation Optimization

T. Havens, C. Spain, Nathan G. Salmon, J. Keller
{"title":"Roach Infestation Optimization","authors":"T. Havens, C. Spain, Nathan G. Salmon, J. Keller","doi":"10.1109/SIS.2008.4668317","DOIUrl":null,"url":null,"abstract":"There are many function optimization algorithms based on the collective behavior of natural systems - Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are two of the most popular. This paper presents a new adaptation of the PSO algorithm, entitled Roach Infestation Optimization (RIO), that is inspired by recent discoveries in the social behavior of cockroaches. We present the development of the simple behaviors of the individual agents, which emulate some of the discovered cockroach social behaviors. We also describe a ldquohungryrdquo version of the PSO and RIO, which we aptly call Hungry PSO and Hungry RIO. Comparisons with standard PSO show that Hungry PSO, RIO, and Hungry RIO are all more effective at finding the global optima of a suite of test functions.","PeriodicalId":178251,"journal":{"name":"2008 IEEE Swarm Intelligence Symposium","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"123","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE Swarm Intelligence Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIS.2008.4668317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 123

Abstract

There are many function optimization algorithms based on the collective behavior of natural systems - Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO) are two of the most popular. This paper presents a new adaptation of the PSO algorithm, entitled Roach Infestation Optimization (RIO), that is inspired by recent discoveries in the social behavior of cockroaches. We present the development of the simple behaviors of the individual agents, which emulate some of the discovered cockroach social behaviors. We also describe a ldquohungryrdquo version of the PSO and RIO, which we aptly call Hungry PSO and Hungry RIO. Comparisons with standard PSO show that Hungry PSO, RIO, and Hungry RIO are all more effective at finding the global optima of a suite of test functions.
蟑螂侵扰优化
基于自然系统集体行为的函数优化算法有很多,其中粒子群优化算法和蚁群优化算法最为流行。本文提出了一种新的自适应粒子群算法,称为蟑螂侵扰优化(RIO),这是受到蟑螂社会行为的最新发现的启发。我们介绍了个体代理的简单行为的发展,这些行为模仿了一些已发现的蟑螂的社会行为。我们还描述了PSO和RIO的ldquohungryrdquo版本,我们恰当地称之为饥饿的PSO和饥饿的RIO。与标准PSO的比较表明,Hungry PSO、RIO和Hungry RIO在寻找一组测试函数的全局最优方面都更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信