Language Model Adaptation for Relevance Feedback in Information Retrieval

Ying-Lang Chang, Jen-Tzung Chien
{"title":"Language Model Adaptation for Relevance Feedback in Information Retrieval","authors":"Ying-Lang Chang, Jen-Tzung Chien","doi":"10.1109/CHINSL.2008.ECP.84","DOIUrl":null,"url":null,"abstract":"Language model is a popular method of exploiting linguistic regularities for document retrieval. To improve retrieval performance, the scheme of relevance feedback is adopted by adjusting the query language model using the information feedback from the retrieved documents. This study presents a new Bayesian learning approach to instantaneous and unsupervised adaptation of language model for adaptive information retrieval. We aim to compensate the domain mismatch between query and documents by adapting the query language model to meet the domains of collected documents. The maximum a posteriori adaptation is executed solely by using the input query without additional collection of adaptation data. The retrieved top N documents are utilized as relevant documents and referred as feedback to estimate mixture of language models for Bayesian document retrieval. The experiments on using TREC datasets show that the proposed method significantly outperforms the other relevance feedback methods.","PeriodicalId":291958,"journal":{"name":"2008 6th International Symposium on Chinese Spoken Language Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 6th International Symposium on Chinese Spoken Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CHINSL.2008.ECP.84","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Language model is a popular method of exploiting linguistic regularities for document retrieval. To improve retrieval performance, the scheme of relevance feedback is adopted by adjusting the query language model using the information feedback from the retrieved documents. This study presents a new Bayesian learning approach to instantaneous and unsupervised adaptation of language model for adaptive information retrieval. We aim to compensate the domain mismatch between query and documents by adapting the query language model to meet the domains of collected documents. The maximum a posteriori adaptation is executed solely by using the input query without additional collection of adaptation data. The retrieved top N documents are utilized as relevant documents and referred as feedback to estimate mixture of language models for Bayesian document retrieval. The experiments on using TREC datasets show that the proposed method significantly outperforms the other relevance feedback methods.
信息检索中关联反馈的语言模型适应
语言模型是一种利用语言规律进行文档检索的常用方法。为了提高检索性能,采用相关性反馈方案,利用检索文档的信息反馈来调整查询语言模型。本文提出了一种新的贝叶斯学习方法,用于语言模型的瞬时无监督自适应信息检索。我们的目标是通过调整查询语言模型来满足收集文档的领域,从而补偿查询和文档之间的领域不匹配。最大后验适应仅通过使用输入查询来执行,而不需要额外收集适应数据。将检索到的前N个文档用作相关文档并作为反馈来估计贝叶斯文档检索中语言模型的混合。在TREC数据集上的实验表明,该方法明显优于其他相关反馈方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信