Robust least-squares bias estimation for radar detecting biases and attitude biases

Pan Jiang-huai
{"title":"Robust least-squares bias estimation for radar detecting biases and attitude biases","authors":"Pan Jiang-huai","doi":"10.1109/MIC.2013.6757926","DOIUrl":null,"url":null,"abstract":"To focus of this paper is on the estimation for the ship-borne radar detecting systematic or registration errors. According to the ship-borne radar data processing, the types of bias are divided into four main categories: radar measurement biases, ship-position biases, attitude biases and baseline transform biases. In this paper, we present an algorithm that uses detecting data for estimation of equivalent biases. Our approach is unique for two reasons. Firstly, we explicitly avoid the use of individual biases and use equivalent biases model the four main class biases, This leads to a highly nonlinear bias model that contains 12 unknown parameters. Secondly, we use the singular value decomposition (SVD) within least-squares estimator to automatically handle the issue of parameter observability. Finally, according to two different simulation scenes, we demonstrate that our algorithm can improve track accuracy, especially for ship-borne radar.","PeriodicalId":404630,"journal":{"name":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 2013 2nd International Conference on Measurement, Information and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MIC.2013.6757926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

To focus of this paper is on the estimation for the ship-borne radar detecting systematic or registration errors. According to the ship-borne radar data processing, the types of bias are divided into four main categories: radar measurement biases, ship-position biases, attitude biases and baseline transform biases. In this paper, we present an algorithm that uses detecting data for estimation of equivalent biases. Our approach is unique for two reasons. Firstly, we explicitly avoid the use of individual biases and use equivalent biases model the four main class biases, This leads to a highly nonlinear bias model that contains 12 unknown parameters. Secondly, we use the singular value decomposition (SVD) within least-squares estimator to automatically handle the issue of parameter observability. Finally, according to two different simulation scenes, we demonstrate that our algorithm can improve track accuracy, especially for ship-borne radar.
雷达探测偏差和姿态偏差的鲁棒最小二乘偏差估计
本文重点研究了舰载雷达探测系统误差或配准误差的估计问题。根据舰载雷达数据处理,将偏差类型分为雷达测量偏差、舰位偏差、姿态偏差和基线变换偏差四大类。本文提出了一种利用检测数据估计等效偏差的算法。我们的方法是独一无二的,原因有二。首先,我们明确避免使用个体偏差,并使用等效偏差对四个主要类别偏差进行建模,这导致包含12个未知参数的高度非线性偏差模型。其次,利用最小二乘估计中的奇异值分解(SVD)自动处理参数的可观测性问题。最后,通过两种不同的仿真场景,验证了该算法能够提高舰船雷达的跟踪精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信