Retinal images: Noise segmentation

M. Akram, A. Tariq, S. Nasir
{"title":"Retinal images: Noise segmentation","authors":"M. Akram, A. Tariq, S. Nasir","doi":"10.1109/INMIC.2008.4777719","DOIUrl":null,"url":null,"abstract":"In automated diagnosis of diabetic retinopathy, retinal images are used. The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. Segmentation of retinal images is essential for this purpose. The segmentation is employed to smooth and strengthen images by separating the noisy area from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, we present a novel automated approach for segmentation of colored retinal images, which involves two steps. In the first step, we create binary noise segmentation mask to segment the retinal image. Second step creates final segmentation mask by applying morphological techniques. We used standard retinal image databases Diaretdb0 and Diaretdb1 to test the validation of our segmentation technique. Experimental results indicate our approach is effective and can get higher segmentation accuracy.","PeriodicalId":112530,"journal":{"name":"2008 IEEE International Multitopic Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Multitopic Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INMIC.2008.4777719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In automated diagnosis of diabetic retinopathy, retinal images are used. The retinal images of poor quality need to be enhanced before the extraction of features and abnormalities. Segmentation of retinal images is essential for this purpose. The segmentation is employed to smooth and strengthen images by separating the noisy area from the overall image thus resulting in retinal image enhancement and less processing time. In this paper, we present a novel automated approach for segmentation of colored retinal images, which involves two steps. In the first step, we create binary noise segmentation mask to segment the retinal image. Second step creates final segmentation mask by applying morphological techniques. We used standard retinal image databases Diaretdb0 and Diaretdb1 to test the validation of our segmentation technique. Experimental results indicate our approach is effective and can get higher segmentation accuracy.
视网膜图像:噪声分割
在糖尿病视网膜病变的自动诊断中,使用视网膜图像。对于质量较差的视网膜图像,需要在提取特征和异常之前进行增强处理。视网膜图像的分割是必不可少的。分割通过将噪声区域从整体图像中分离出来来平滑和增强图像,从而增强视网膜图像,减少处理时间。在本文中,我们提出了一种新的彩色视网膜图像的自动分割方法,该方法包括两个步骤。在第一步,我们创建二值噪声分割掩模来分割视网膜图像。第二步通过应用形态学技术创建最终分割掩码。我们使用标准的视网膜图像数据库Diaretdb0和Diaretdb1来测试我们的分割技术的有效性。实验结果表明,该方法是有效的,可以获得较高的分割精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信