Development and benchmarking a parallel Data AcQuisition framework using MPI with hash and hash+tree structures in a cluster environment

P. Czarnul, Grzegorz Golaszewski, Grzegorz Jereczek, M. Maciejewski
{"title":"Development and benchmarking a parallel Data AcQuisition framework using MPI with hash and hash+tree structures in a cluster environment","authors":"P. Czarnul, Grzegorz Golaszewski, Grzegorz Jereczek, M. Maciejewski","doi":"10.1109/ISPDC51135.2020.00031","DOIUrl":null,"url":null,"abstract":"In the paper we propose a solution that uses either a 3-layered index structure based on hash tables or a hash+tree structure for efficient parallel processing of data in a Data AcQuisition (DAQ) system. The proposed framework allows for parallel data writes from multiple multithreaded client processes to multiple multithreaded server processes that use a thread-safe hash-table-based library. Communication is conducted using an MPI_THREAD_MULTIPLE enabled MPI implementation. We demonstrate that the solution scales well in two cluster configurations using InfiniBand, specifically for increasing numbers of client as well as server threads. We present how performance depends on various configuration parameters of a DAQ systems like data distribution across the readout system, its size, and percentage of data to be fetched. Furthermore, we show how it depends on the size of value associated with a given write/read. We compare the performance of both proposed data structures for different configurations. The results allow the reader to learn real performance numbers and characteristics of such a solution, applicable to large scale parallel data processing in a DAQ system and choose the optimal solution.","PeriodicalId":426824,"journal":{"name":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 19th International Symposium on Parallel and Distributed Computing (ISPDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC51135.2020.00031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the paper we propose a solution that uses either a 3-layered index structure based on hash tables or a hash+tree structure for efficient parallel processing of data in a Data AcQuisition (DAQ) system. The proposed framework allows for parallel data writes from multiple multithreaded client processes to multiple multithreaded server processes that use a thread-safe hash-table-based library. Communication is conducted using an MPI_THREAD_MULTIPLE enabled MPI implementation. We demonstrate that the solution scales well in two cluster configurations using InfiniBand, specifically for increasing numbers of client as well as server threads. We present how performance depends on various configuration parameters of a DAQ systems like data distribution across the readout system, its size, and percentage of data to be fetched. Furthermore, we show how it depends on the size of value associated with a given write/read. We compare the performance of both proposed data structures for different configurations. The results allow the reader to learn real performance numbers and characteristics of such a solution, applicable to large scale parallel data processing in a DAQ system and choose the optimal solution.
在集群环境中使用具有散列和散列+树结构的MPI开发和基准测试并行数据采集框架
在本文中,我们提出了一种在数据采集(DAQ)系统中使用基于哈希表的三层索引结构或哈希+树结构来高效并行处理数据的解决方案。提议的框架允许从多个多线程客户端进程向多个多线程服务器进程并行写入数据,这些服务器进程使用线程安全的基于散列表的库。通信是使用启用MPI_THREAD_MULTIPLE的MPI实现进行的。我们演示了该解决方案在使用InfiniBand的两个集群配置中可以很好地扩展,特别是对于增加客户机和服务器线程的数量。我们介绍了性能如何取决于DAQ系统的各种配置参数,如读出系统中的数据分布、其大小和要提取的数据百分比。此外,我们还展示了它如何依赖于与给定写/读相关联的值的大小。我们比较了两种数据结构在不同配置下的性能。结果可以让读者了解到这种解决方案的真实性能数字和特点,适用于DAQ系统中的大规模并行数据处理并选择最优解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信