A Feasibility Study of Microwave Metal and Dielectric Classification Based on Machine Learning Techniques

Gengyang Qie, Lixinran Tang, Mingdong Li
{"title":"A Feasibility Study of Microwave Metal and Dielectric Classification Based on Machine Learning Techniques","authors":"Gengyang Qie, Lixinran Tang, Mingdong Li","doi":"10.1109/TOCS56154.2022.10015930","DOIUrl":null,"url":null,"abstract":"This paper studies the classification of metal and dielectric based on microwave signals using machine-learning techniques. Numerical simulations are applied to generate synthetic data. Training samples with metallic and dielectric objects are simulated, respectively. The synthetic data are then applied to the training and testing of Supporting Vector Machine (SVM) and Convolutional Neural Network (CNN). The average accuracy of SVM and BP is 82% and 98 %, respectively. The results indicate the feasibility of microwave metallic and dielectric targets classification using learning-based techniques, which can provide more a priori information for the subsequent imaging algorithms.","PeriodicalId":227449,"journal":{"name":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Conference on Telecommunications, Optics and Computer Science (TOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TOCS56154.2022.10015930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies the classification of metal and dielectric based on microwave signals using machine-learning techniques. Numerical simulations are applied to generate synthetic data. Training samples with metallic and dielectric objects are simulated, respectively. The synthetic data are then applied to the training and testing of Supporting Vector Machine (SVM) and Convolutional Neural Network (CNN). The average accuracy of SVM and BP is 82% and 98 %, respectively. The results indicate the feasibility of microwave metallic and dielectric targets classification using learning-based techniques, which can provide more a priori information for the subsequent imaging algorithms.
基于机器学习技术的微波金属和介质分类的可行性研究
本文利用机器学习技术研究了基于微波信号的金属和介质分类。采用数值模拟方法生成合成数据。分别模拟了金属物体和电介质物体的训练样本。然后将合成数据应用于支持向量机(SVM)和卷积神经网络(CNN)的训练和测试。SVM和BP的平均准确率分别为82%和98%。结果表明,基于学习的微波金属和介质目标分类技术是可行的,可以为后续的成像算法提供更多的先验信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信