Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for Stock Prices Forecasting to Bank of Palestine

Shady I. Altelbany, Anwar A. Abualhussein
{"title":"Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for Stock Prices Forecasting to Bank of Palestine","authors":"Shady I. Altelbany, Anwar A. Abualhussein","doi":"10.52113/6/2021-11/8-28","DOIUrl":null,"url":null,"abstract":"This study aimed to Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for the time series data of a monthly Stock Prices to Bank of Palestine from Nov. 2005 to Oct. 2020, and comparing between models to see which one is better in forecasting. The results of applying the methods were compared through the (MAPE, MAE, RMSE), the most accurate model is ERNN 14-25-1 with minimum forecast measure error.","PeriodicalId":426963,"journal":{"name":"Muthanna Journal of Administrative and Economic Sciences","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muthanna Journal of Administrative and Economic Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52113/6/2021-11/8-28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This study aimed to Performance Comparison of Neural Networks (MLP, RBFNN, ERNN, JRNN) Models for the time series data of a monthly Stock Prices to Bank of Palestine from Nov. 2005 to Oct. 2020, and comparing between models to see which one is better in forecasting. The results of applying the methods were compared through the (MAPE, MAE, RMSE), the most accurate model is ERNN 14-25-1 with minimum forecast measure error.
神经网络(MLP、RBFNN、ERNN、JRNN)模型在巴勒斯坦银行股价预测中的性能比较
本研究旨在比较神经网络(MLP、RBFNN、ERNN、JRNN)模型对2005年11月至2020年10月巴勒斯坦银行每月股票价格的时间序列数据的性能,并比较模型之间的预测效果。通过(MAPE、MAE、RMSE)对应用方法的结果进行比较,预测精度最高的模型是ERNN 14-25-1,预报测量误差最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信