Families of affine Grassmannians

P. Scholze, Jared Weinstein
{"title":"Families of affine Grassmannians","authors":"P. Scholze, Jared Weinstein","doi":"10.2307/j.ctvs32rc9.23","DOIUrl":null,"url":null,"abstract":"This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.","PeriodicalId":270009,"journal":{"name":"Berkeley Lectures on p-adic Geometry","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Berkeley Lectures on p-adic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvs32rc9.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This chapter studies families of affine Grassmannians. In the geometric case, if X is a smooth curve over a field k, Beilinson-Drinfeld defined a family of affine Grassmannians whose fiber parametrizes G-torsors on X. If one fixes a coordinate at x, this gets identified with the affine Grassmannian considered previously. Over fibers with distinct points xi, one gets a product of n copies of the affine Grassmannian, while over fibers with all points xi = x equal, one gets just one copy of the affine Grassmannian: This is possible as the affine Grassmannian is infinite-dimensional. However, sometimes it is useful to remember more information when the points collide. The chapter then discusses the convolution affine Grassmannian in the setting of the previous lecture.
仿射格拉斯曼人的科
本章研究仿射格拉斯曼族。在几何情况下,如果X是场k上的光滑曲线,Beilinson-Drinfeld定义了一族仿射格拉斯曼子,其纤维参数化了X上的G-torsors。如果在X处固定一个坐标,这就与前面考虑的仿射格拉斯曼子相同。在具有不同点xi的纤维上,我们得到n个仿射格拉斯曼年的乘积,而在所有点xi = x相等的纤维上,我们只得到一个仿射格拉斯曼年的副本:这是可能的,因为仿射格拉斯曼年是无限维的。然而,有时在点碰撞时记住更多的信息是有用的。然后,本章在上一讲的背景下讨论卷积仿射格拉斯曼。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信