Real-time Model Predictive Control for Wind Farms: a Koopman Dynamic Mode Decomposition Approach

B. Sharan, A. Dittmer, H. Werner
{"title":"Real-time Model Predictive Control for Wind Farms: a Koopman Dynamic Mode Decomposition Approach","authors":"B. Sharan, A. Dittmer, H. Werner","doi":"10.23919/ECC55457.2022.9838117","DOIUrl":null,"url":null,"abstract":"This work demonstrates the application of Koopman-based system identification to wind farm control, where wake interactions are highly nonlinear in nature. The linear models identified using measurements and signals available in real-time, i.e effective wind speed at the turbine rotors and control signals, show more than 85 % variance-accounted-for (VAF). Different Koopman lifting function combinations, motivated by the 2D Navier-Stokes equations, governing the underlying wake interaction, are compared. The obtained Koopman models are used in closed-loop in the WFSim environment. The design of the qLMPC wind farm controller is provided and it is shown that the underlying quadratic programming (QP) converges in milliseconds thus making this design applicable in real-time to small wind farms. Finally, the results for power reference tracking obtained with qLMPC are shown based on estimated wind. It is demonstrated that using Koopman extended dynamic mode decomposition (EDMD) for wind estimation can lead to high-quality farm level control in the absence of wind measurements.","PeriodicalId":374682,"journal":{"name":"2022 European Control Conference (ECC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC55457.2022.9838117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This work demonstrates the application of Koopman-based system identification to wind farm control, where wake interactions are highly nonlinear in nature. The linear models identified using measurements and signals available in real-time, i.e effective wind speed at the turbine rotors and control signals, show more than 85 % variance-accounted-for (VAF). Different Koopman lifting function combinations, motivated by the 2D Navier-Stokes equations, governing the underlying wake interaction, are compared. The obtained Koopman models are used in closed-loop in the WFSim environment. The design of the qLMPC wind farm controller is provided and it is shown that the underlying quadratic programming (QP) converges in milliseconds thus making this design applicable in real-time to small wind farms. Finally, the results for power reference tracking obtained with qLMPC are shown based on estimated wind. It is demonstrated that using Koopman extended dynamic mode decomposition (EDMD) for wind estimation can lead to high-quality farm level control in the absence of wind measurements.
风电场实时模型预测控制:一种Koopman动态模态分解方法
这项工作证明了基于koopman的系统识别在风电场控制中的应用,其中尾流相互作用本质上是高度非线性的。利用实时测量和可用信号(即涡轮转子的有效风速和控制信号)确定的线性模型显示出超过85%的方差(VAF)。由二维Navier-Stokes方程驱动的不同库普曼升力函数组合,控制潜在的尾流相互作用,进行了比较。得到的库普曼模型在WFSim环境下用于闭环。给出了qLMPC风电场控制器的设计,并证明了底层二次规划(QP)在毫秒内收敛,从而使该设计适用于小型风电场的实时控制。最后,给出了基于估计风的qLMPC功率参考跟踪的结果。研究表明,在没有风测量的情况下,使用Koopman扩展动态模态分解(EDMD)进行风估计可以实现高质量的农场水平控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信