{"title":"Dynamic parallel complexity of computational circuits","authors":"G. Miller, S. Teng","doi":"10.1145/28395.28423","DOIUrl":null,"url":null,"abstract":"The dynamic parallel complexity of general computational circuits (defined in introduction) is discussed. We exhibit some relationships between parallel circuit evaluation and some uniform closure properties of a certain class of unary functions and present a systematic method for the design of processor efficient parallel algorithms for circuit evaluation. Using this method: (1) we improve the algorithm for parallel Boolean circuit evaluation; (2) we give a nontrivial upper bound for parallel min-max-plus circuit evaluation; (3) we partially answer the first open question raised in [MiRK85] by showing that all circuits over finite noncommutative semi-ring and circuits over infinite non-commutative semi-ring which has finite dimension over a commutative semi-ring can be evaluated in polylogarithmic time in its size and degree using M(n) processors. Moreover, we develop a theory for determining closure properties of certain classes of unary functions.","PeriodicalId":161795,"journal":{"name":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1987-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the nineteenth annual ACM symposium on Theory of computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/28395.28423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30
Abstract
The dynamic parallel complexity of general computational circuits (defined in introduction) is discussed. We exhibit some relationships between parallel circuit evaluation and some uniform closure properties of a certain class of unary functions and present a systematic method for the design of processor efficient parallel algorithms for circuit evaluation. Using this method: (1) we improve the algorithm for parallel Boolean circuit evaluation; (2) we give a nontrivial upper bound for parallel min-max-plus circuit evaluation; (3) we partially answer the first open question raised in [MiRK85] by showing that all circuits over finite noncommutative semi-ring and circuits over infinite non-commutative semi-ring which has finite dimension over a commutative semi-ring can be evaluated in polylogarithmic time in its size and degree using M(n) processors. Moreover, we develop a theory for determining closure properties of certain classes of unary functions.