Computing ears and branchings in parallel

L. Lovász
{"title":"Computing ears and branchings in parallel","authors":"L. Lovász","doi":"10.1109/SFCS.1985.16","DOIUrl":null,"url":null,"abstract":"An ear-decomposition of a digraph is a representation of it as the union of (open or closed) directed paths, each having its endpoints in common with the union of the previous paths but nothing else. We prove that finding an ear-decomposition of a strongly directed graph is in NC, i.e. an eardecomposition can be constructed in parallel in polylog time, using a polynomial number of processors. Using a similar technique, we show that the problem of finding a minimum weight spanning arborescence in an arcweighted rooted digraph is in NC.","PeriodicalId":296739,"journal":{"name":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1985-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"26th Annual Symposium on Foundations of Computer Science (sfcs 1985)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1985.16","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 68

Abstract

An ear-decomposition of a digraph is a representation of it as the union of (open or closed) directed paths, each having its endpoints in common with the union of the previous paths but nothing else. We prove that finding an ear-decomposition of a strongly directed graph is in NC, i.e. an eardecomposition can be constructed in parallel in polylog time, using a polynomial number of processors. Using a similar technique, we show that the problem of finding a minimum weight spanning arborescence in an arcweighted rooted digraph is in NC.
并行计算耳和分支
有向图的耳朵分解是将其表示为(开放或封闭)有向路径的联合,每个路径的端点与前一个路径的联合相同,但没有其他。我们证明了寻找强有向图的耳朵分解是在NC中,即耳朵分解可以在多对数时间内并行构造,使用多项式数量的处理器。使用类似的技术,我们证明了在arcweighted有根图中寻找最小权值的问题是在NC中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信