Course correction: using analytics to predict course success

Rebecca T Barber, Mike Sharkey
{"title":"Course correction: using analytics to predict course success","authors":"Rebecca T Barber, Mike Sharkey","doi":"10.1145/2330601.2330664","DOIUrl":null,"url":null,"abstract":"Predictive analytics techniques applied to a broad swath of student data can aid in timely intervention strategies to help prevent students from failing a course. This paper discusses a predictive analytic model that was created for the University of Phoenix. The purpose of the model is to identify students who are in danger of failing the course in which they are currently enrolled. Within the model's architecture, data from the learning management system (LMS), financial aid system, and student system are combined to calculate a likelihood of any given student failing the current course. The output can be used to prioritize students for intervention and referral to additional resources. The paper includes a discussion of the predictor and statistical tests used, validation procedures, and plans for implementation.","PeriodicalId":311750,"journal":{"name":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"134","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2330601.2330664","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 134

Abstract

Predictive analytics techniques applied to a broad swath of student data can aid in timely intervention strategies to help prevent students from failing a course. This paper discusses a predictive analytic model that was created for the University of Phoenix. The purpose of the model is to identify students who are in danger of failing the course in which they are currently enrolled. Within the model's architecture, data from the learning management system (LMS), financial aid system, and student system are combined to calculate a likelihood of any given student failing the current course. The output can be used to prioritize students for intervention and referral to additional resources. The paper includes a discussion of the predictor and statistical tests used, validation procedures, and plans for implementation.
课程修正:使用分析预测课程成功
预测分析技术应用于广泛的学生数据,可以帮助制定及时的干预策略,以帮助防止学生挂科。本文讨论了为凤凰城大学创建的预测分析模型。该模型的目的是识别那些有挂科危险的学生。在模型的架构中,来自学习管理系统(LMS)、经济援助系统和学生系统的数据被结合起来计算任何给定学生不及格的可能性。该结果可用于确定干预学生的优先顺序,并将其转介给额外的资源。本文包括对所使用的预测和统计测试、验证程序和实施计划的讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信