Comparison Analysis of Data Augmentation using Bootstrap, GANs and Autoencoder

Mukrin Nakhwan, Rakkrit Duangsoithong
{"title":"Comparison Analysis of Data Augmentation using Bootstrap, GANs and Autoencoder","authors":"Mukrin Nakhwan, Rakkrit Duangsoithong","doi":"10.1109/KST53302.2022.9729065","DOIUrl":null,"url":null,"abstract":"In order to improve predictive accuracy for insufficient observations, data augmentation is a well-known and commonly useful technique to increase more samples by generating new data which can avoid data collection problems. This paper presents comparison analysis of three data augmentation methods using Bootstrap method, Generative Adversarial Networks (GANs) and Autoencoder for increasing a number of samples. The proposal is applied on 8 datasets with binary classification from repository data websites. The research is mainly evaluated by generating new additional data using data augmentation. Secondly, combining generated samples and original data. Finally, validating performance on four classifier models. The experimental result showed that the proposed approach of increasing samples by Autoencoder and GANs achieved better predictive performance than the original data. Conversely, increasing samples by Bootstrap method provided lowest predictive performance.","PeriodicalId":433638,"journal":{"name":"2022 14th International Conference on Knowledge and Smart Technology (KST)","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Smart Technology (KST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KST53302.2022.9729065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In order to improve predictive accuracy for insufficient observations, data augmentation is a well-known and commonly useful technique to increase more samples by generating new data which can avoid data collection problems. This paper presents comparison analysis of three data augmentation methods using Bootstrap method, Generative Adversarial Networks (GANs) and Autoencoder for increasing a number of samples. The proposal is applied on 8 datasets with binary classification from repository data websites. The research is mainly evaluated by generating new additional data using data augmentation. Secondly, combining generated samples and original data. Finally, validating performance on four classifier models. The experimental result showed that the proposed approach of increasing samples by Autoencoder and GANs achieved better predictive performance than the original data. Conversely, increasing samples by Bootstrap method provided lowest predictive performance.
自举、gan和自编码器数据增强的比较分析
为了在观测不足的情况下提高预测精度,数据扩增是一种众所周知且常用的技术,通过生成新数据来增加更多的样本,从而避免数据收集问题。本文对自举法、生成对抗网络(GANs)和自动编码器三种数据增强方法进行了比较分析。将该方法应用于知识库数据网站的8个二元分类数据集。该研究主要通过数据增强产生新的附加数据来评估。其次,将生成的样本与原始数据相结合。最后,验证了四种分类器模型的性能。实验结果表明,采用自编码器和gan增加样本的方法比原始数据具有更好的预测性能。相反,通过Bootstrap方法增加样本的预测性能最低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信