Magnetoelectric effects in bilayer multiferroic core-shell composites

H. Wang, E. Pan, W.Q. Chen
{"title":"Magnetoelectric effects in bilayer multiferroic core-shell composites","authors":"H. Wang, E. Pan, W.Q. Chen","doi":"10.1515/jmmm-2016-0151","DOIUrl":null,"url":null,"abstract":"Abstract We investigate magnetoelectric (ME) effects in bilayer multiferroic core-shell composites in this paper. The composites are driven by the radial magnetic field and the induced radial deformation/vibration is studied. Two configurations are considered in a concise and uniform manner mathematically. One is spherical and the other is cylindrical. For bilayer core-shell composites, we show that the geometric configuration has a significant effect on the ME effect in multiferroic core-shell composites for both low-frequency and electromechanical resonance ranges. At the low-frequency range, except for the mechanically clamped case, the ME effects in spherical multiferroic composites are always stronger than that in cylindrical ones. At the electromechanical resonance range, for traction-free case, the fundamental resonance frequency of the spherical multiferroic composite is higher than that of the cylindrical one and thus the corresponding ME effect in spherical composite is stronger than that in cylindrical one.","PeriodicalId":359168,"journal":{"name":"Journal of Modeling in Mechanics and Materials","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modeling in Mechanics and Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmmm-2016-0151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract We investigate magnetoelectric (ME) effects in bilayer multiferroic core-shell composites in this paper. The composites are driven by the radial magnetic field and the induced radial deformation/vibration is studied. Two configurations are considered in a concise and uniform manner mathematically. One is spherical and the other is cylindrical. For bilayer core-shell composites, we show that the geometric configuration has a significant effect on the ME effect in multiferroic core-shell composites for both low-frequency and electromechanical resonance ranges. At the low-frequency range, except for the mechanically clamped case, the ME effects in spherical multiferroic composites are always stronger than that in cylindrical ones. At the electromechanical resonance range, for traction-free case, the fundamental resonance frequency of the spherical multiferroic composite is higher than that of the cylindrical one and thus the corresponding ME effect in spherical composite is stronger than that in cylindrical one.
双层多铁核-壳复合材料的磁电效应
摘要研究了双层多铁核壳复合材料的磁电效应。采用径向磁场驱动复合材料,研究了复合材料的径向变形/振动。在数学上以一种简洁和统一的方式考虑了两种构型。一个是球形,另一个是圆柱形。对于双层核壳复合材料,我们发现在低频和机电共振范围内,几何构型对多铁性核壳复合材料的ME效应有显著影响。在低频范围内,除机械夹紧情况外,球形多铁复合材料的ME效应总是比圆柱形多铁复合材料强。在机电共振范围内,无牵引力情况下,球形多铁复合材料的基频高于圆柱形多铁复合材料的基频,因此球形多铁复合材料的ME效应强于圆柱形多铁复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信