Homotopic Hopf-Galois extensions: foundations and examples

K. Hess
{"title":"Homotopic Hopf-Galois extensions: foundations and examples","authors":"K. Hess","doi":"10.2140/GTM.2009.16.79","DOIUrl":null,"url":null,"abstract":"Hopf‐Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group G are the Hopf‐Galois extensions with respect to the dual of the group algebra of G . Rognes recently defined an analogous notion of Hopf‐Galois extensions in the category of structured ring spectra, motivated by the fundamental example of the unit map from the sphere spectrum to MU . This article introduces a theory of homotopic Hopf‐Galois extensions in a monoidal category with compatible model category structure that generalizes the case of structured ring spectra. In particular, we provide explicit examples of homotopic Hopf‐Galois extensions in various categories of interest to topologists, showing that, for example, a principal fibration of simplicial monoids is a homotopic Hopf‐ Galois extension in the category of simplicial sets. We also investigate the relation of homotopic Hopf‐Galois extensions to descent. 16W30, 55U35; 13B05, 55P42, 57T05, 57T30","PeriodicalId":115248,"journal":{"name":"Geometry and Topology Monographs","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry and Topology Monographs","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/GTM.2009.16.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Hopf‐Galois extensions of rings generalize Galois extensions, with the coaction of a Hopf algebra replacing the action of a group. Galois extensions with respect to a group G are the Hopf‐Galois extensions with respect to the dual of the group algebra of G . Rognes recently defined an analogous notion of Hopf‐Galois extensions in the category of structured ring spectra, motivated by the fundamental example of the unit map from the sphere spectrum to MU . This article introduces a theory of homotopic Hopf‐Galois extensions in a monoidal category with compatible model category structure that generalizes the case of structured ring spectra. In particular, we provide explicit examples of homotopic Hopf‐Galois extensions in various categories of interest to topologists, showing that, for example, a principal fibration of simplicial monoids is a homotopic Hopf‐ Galois extension in the category of simplicial sets. We also investigate the relation of homotopic Hopf‐Galois extensions to descent. 16W30, 55U35; 13B05, 55P42, 57T05, 57T30
同伦Hopf-Galois扩展:基础和例子
环的Hopf - Galois扩展推广了Galois扩展,用Hopf代数的协作用代替了群的协作用。关于群G的伽罗瓦扩展是关于G的群代数的对偶的Hopf -伽罗瓦扩展。Rognes最近在结构环光谱的范畴中定义了一个类似的Hopf - Galois扩展的概念,这是由球体光谱到MU的单位映射的基本例子所激发的。本文介绍了具有相容模范畴结构的一元范畴上的同伦Hopf - Galois扩展理论,推广了结构环谱的情况。特别地,我们提供了拓扑学家感兴趣的各种范畴内的同伦Hopf‐Galois扩展的显式例子,证明了,例如,简单单似群的一个主颤振是简单集合范畴内的同伦Hopf‐Galois扩展。我们还研究了同伦Hopf - Galois扩展与下降的关系。16 w30 55 u35;13b05, 55p42, 57t05, 57t30
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信