Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM)

Donghun Lee, J. So, Minseon Ahn, Jong-Geon Lee, Jungmin Kim, Jeonghyeon Cho, Oliver Rebholz, Vishnu Charan Thummala, JV RaviShankar, S. S. Upadhya, Mohammed Ibrahim Khan, J. Kim
{"title":"Improving In-Memory Database Operations with Acceleration DIMM (AxDIMM)","authors":"Donghun Lee, J. So, Minseon Ahn, Jong-Geon Lee, Jungmin Kim, Jeonghyeon Cho, Oliver Rebholz, Vishnu Charan Thummala, JV RaviShankar, S. S. Upadhya, Mohammed Ibrahim Khan, J. Kim","doi":"10.1145/3533737.3535093","DOIUrl":null,"url":null,"abstract":"The significant overhead needed to transfer the data between CPUs and memory devices is one of the hottest issues in many areas of computing, such as database management systems. Disaggregated computing on the memory devices is being highlighted as one promising approach. In this work, we introduce a new near-memory acceleration scheme for in-memory database operations, called Acceleration DIMM (AxDIMM). It behaves like a normal DIMM through the standard DIMM-compatible interface, but has embedded computing units for data-intensive operations. With the minimized data transfer overhead, it reduces CPU resource consumption, relieves the memory bandwidth bottleneck, and boosts energy efficiency. We implement scan operations, one of the most data-intensive database operations, within AxDIMM and compare its performance with SIMD (Single Instruction Multiple Data) implementation on CPU. Our investigation shows that the acceleration achieves 6.8x more throughput than the SIMD implementation.","PeriodicalId":381503,"journal":{"name":"Proceedings of the 18th International Workshop on Data Management on New Hardware","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 18th International Workshop on Data Management on New Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3533737.3535093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The significant overhead needed to transfer the data between CPUs and memory devices is one of the hottest issues in many areas of computing, such as database management systems. Disaggregated computing on the memory devices is being highlighted as one promising approach. In this work, we introduce a new near-memory acceleration scheme for in-memory database operations, called Acceleration DIMM (AxDIMM). It behaves like a normal DIMM through the standard DIMM-compatible interface, but has embedded computing units for data-intensive operations. With the minimized data transfer overhead, it reduces CPU resource consumption, relieves the memory bandwidth bottleneck, and boosts energy efficiency. We implement scan operations, one of the most data-intensive database operations, within AxDIMM and compare its performance with SIMD (Single Instruction Multiple Data) implementation on CPU. Our investigation shows that the acceleration achieves 6.8x more throughput than the SIMD implementation.
使用加速DIMM (AxDIMM)改进内存中数据库操作
在cpu和内存设备之间传输数据所需的巨大开销是许多计算领域(如数据库管理系统)中最热门的问题之一。存储设备上的分解计算作为一种很有前途的方法得到了强调。在这项工作中,我们为内存数据库操作引入了一种新的近内存加速方案,称为加速DIMM (AxDIMM)。通过标准的DIMM兼容接口,它像普通的DIMM一样工作,但具有用于数据密集型操作的嵌入式计算单元。数据传输开销最小化,降低CPU资源消耗,缓解内存带宽瓶颈,提高能源效率。我们在AxDIMM中实现了数据最密集的数据库操作之一——扫描操作,并将其性能与CPU上的单指令多数据(SIMD)实现进行了比较。我们的调查显示,该加速实现的吞吐量比SIMD实现高6.8倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信