{"title":"A Yes/No Answer Generator Based on Sentiment-Word Scores in Biomedical Question Answering","authors":"SarroutiMourad, El AlaouiSaid Ouatik","doi":"10.4018/978-1-7998-1204-3.ch005","DOIUrl":null,"url":null,"abstract":"Background and Objective: Yes/no question answering (QA) in open-domain is a longstanding challenge widely studied over the last decades. However, it still requires further efforts in the biomedical domain. Yes/no QA aims at answering yes/no questions, which are seeking for a clear “yes” or “no” answer. In this paper, we present a novel yes/no answer generator based on sentiment-word scores in biomedical QA. Methods: In the proposed method, we first use the Stanford CoreNLP for tokenization and part-of-speech tagging all relevant passages to a given yes/no question. We then assign a sentiment score based on SentiWordNet to each word of the passages. Finally, the decision on either the answers “yes” or “no” is based on the obtained sentiment-passages score: “yes” for a positive final sentiment-passages score and “no” for a negative one. Results: Experimental evaluations performed on BioASQ collections show that the proposed method is more effective as compared with the current state-of-the-art method, and significantly outperforms it by an average of 15.68% in terms of accuracy.","PeriodicalId":177246,"journal":{"name":"Data Analytics in Medicine","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data Analytics in Medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-1204-3.ch005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Background and Objective: Yes/no question answering (QA) in open-domain is a longstanding challenge widely studied over the last decades. However, it still requires further efforts in the biomedical domain. Yes/no QA aims at answering yes/no questions, which are seeking for a clear “yes” or “no” answer. In this paper, we present a novel yes/no answer generator based on sentiment-word scores in biomedical QA. Methods: In the proposed method, we first use the Stanford CoreNLP for tokenization and part-of-speech tagging all relevant passages to a given yes/no question. We then assign a sentiment score based on SentiWordNet to each word of the passages. Finally, the decision on either the answers “yes” or “no” is based on the obtained sentiment-passages score: “yes” for a positive final sentiment-passages score and “no” for a negative one. Results: Experimental evaluations performed on BioASQ collections show that the proposed method is more effective as compared with the current state-of-the-art method, and significantly outperforms it by an average of 15.68% in terms of accuracy.