Machine Learning Stop Signal Test (ML-SST): ML-based Mouse Tracking Enhances Adult ADHD Diagnosis

A. Leontyev, T. Yamauchi, Moein Razavi
{"title":"Machine Learning Stop Signal Test (ML-SST): ML-based Mouse Tracking Enhances Adult ADHD Diagnosis","authors":"A. Leontyev, T. Yamauchi, Moein Razavi","doi":"10.1109/ACIIW.2019.8925073","DOIUrl":null,"url":null,"abstract":"Attention-deficit/Hyperactivity disorder (ADHD) affects the quality of life worldwide. It is commonly diagnosed and studied with specialized questionnaires and behavioral tests. However, in cases of late-onset or mild forms of ADHD, behavioral measures often fail to gauge the deficiencies well-highlighted by questionnaires. This lack of sensitivity in behavioral tests is problematic because it prevents researchers from studying pathophysiology of ADHD ranging from normal to abnormal. To improve the sensitivity of behavioral tests, in the present study we propose a novel version of the Stop-signal task (SST) - a common behavioral test of ADHD - which integrates machine learning and mouse cursor tracking (ML-SST). In one experiment, we compared ML-SST and a standard version of SST (s-SST) in their ability to detect ADHD symptoms in an adult sample. Our results indicate that introducing mouse cursor tracking and ridge regression produces the strongest and most stable associations between questionnaire data and behavioral measures.","PeriodicalId":193568,"journal":{"name":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIW.2019.8925073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Attention-deficit/Hyperactivity disorder (ADHD) affects the quality of life worldwide. It is commonly diagnosed and studied with specialized questionnaires and behavioral tests. However, in cases of late-onset or mild forms of ADHD, behavioral measures often fail to gauge the deficiencies well-highlighted by questionnaires. This lack of sensitivity in behavioral tests is problematic because it prevents researchers from studying pathophysiology of ADHD ranging from normal to abnormal. To improve the sensitivity of behavioral tests, in the present study we propose a novel version of the Stop-signal task (SST) - a common behavioral test of ADHD - which integrates machine learning and mouse cursor tracking (ML-SST). In one experiment, we compared ML-SST and a standard version of SST (s-SST) in their ability to detect ADHD symptoms in an adult sample. Our results indicate that introducing mouse cursor tracking and ridge regression produces the strongest and most stable associations between questionnaire data and behavioral measures.
机器学习停止信号测试(ML-SST):基于ml的鼠标跟踪增强成人ADHD诊断
注意缺陷/多动障碍(ADHD)影响着全世界的生活质量。它通常通过专门的问卷调查和行为测试来诊断和研究。然而,在迟发性或轻度多动症的病例中,行为测量通常无法衡量问卷中突出的缺陷。这种缺乏敏感性的行为测试是有问题的,因为它阻碍了研究人员研究ADHD从正常到异常的病理生理学。为了提高行为测试的灵敏度,在本研究中,我们提出了一种新的停止信号任务(SST) -一种常见的ADHD行为测试-它集成了机器学习和鼠标光标跟踪(ML-SST)。在一项实验中,我们比较了ML-SST和标准版本的SST (s-SST)在成人样本中检测ADHD症状的能力。我们的研究结果表明,引入鼠标光标跟踪和脊回归在问卷数据和行为测量之间产生了最强和最稳定的关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信